Abstract
This Account summarizes our recent development of triflic imide
(Tf2NH)-catalyzed cycloaddition and cascade reactions. Reactions
of electron-rich olefins, possessing a silyl group, with α,β-unsaturated
carbonyl compounds afforded highly substituted cyclobutanes, cyclopentanes,
and bicyclo[4.2.0]octanes in good to excellent
yields. In the reactions, Tf2NH acts as a precatalyst
to produce a strong Lewis acid, silyl triflic imide, which activates
the cycloaddition reactions. Reactions of electron-rich olefins
with aldimines furnished highly substituted heterocycles such as
piperidines, quinolines, and pyrrolidines. In these cases, Tf2NH
acts as a strong Brønsted acid. Moreover, it was found
that Tf2NH can catalyze more than two mechanistically
distinct reactions in one pot (tandem catalysis), so that a variety
of molecular skeletons can be constructed in a single operation.
1 Introduction
2 (2+2) Cycloaddition of α,β-Unsaturated
Esters
2.1 (2+2) Cycloadditon with Silyl Enol Ethers
2.2 (2+2) Cycloaddition with Allylsilanes
3 (3+2) Cycloaddition of Donor-Acceptor Cyclopropanes
4 Multicomponent Reaction: Cascade (4+2)-(2+2)
Cycloaddition
5 Cycloaddition of Imines
5.1 Aza-(4+2) Cycloaddition with 2-Siloxydienes
5.2 Cascade Povarov-Hydrogen-Transfer Reaction with
Allylsilanes
5.3 Aza-(3+2) Cycloaddition with α,α-Dimethylallylsilanes
6 Conclusions
Key words
cycloadditions - catalysis - multicomponent
reactions - triflic imides - auto-tandem catalysis
References and Notes
1a
Carruthers W.
Cycloaddition
Reactions in Organic Synthesis
Pergamon Press;
Oxford:
1990.
1b
Cycloaddition
Reactions in Organic Synthesis
Kobayashi S.
Jørgensen KA.
Wiley-VCH;
Weinheim:
2002.
2 Two systems of notations, (i+j+…)
and [i+j+…], have
been used for cycloaddition reactions; see the IUPAC guides for their
difference. A (i+j+…) cycloaddition
is a reaction in which two or more molecules provide units of i, j, … linearly connected
atoms: these units become joined at their respective termini by
new s bond so as to form a cyclic compound containing (i+j+…)
atoms. In contrast, the symbolism [i+j+…] for a
cycloaddition identifies the numbers i, j, … of electrons in the interacting
units that participate in the transformation of reactants to products.
In this Letter, the symbolism (i+j+…) will be used.
See IUPAC Gold Book (http://goldbook.iupac.org/index.html).
3
Lewis
Acids in Organic Synthesis
Vol. 1 and 2:
Yamamoto H.
Wiley-VCH;
Weinheim:
2000.
4
Yamamoto H.
Nakashima D. In Acid
Catalysis in Modern Organic Synthesis
Yamamoto H.
Ishihara K.
Wiley-VCH;
Weinheim:
2008.
p.35
5
Akiyama T.
Chem.
Rev.
2007,
107:
5744
6
Foropoulos J.
DesMarteau DD.
Inorg. Chem.
1984,
23:
3720
7a
Ishihara K.
Hiraiwa Y.
Yamamoto H.
Synlett
2001,
1851
7b
Cossy J.
Lutz F.
Alauze V.
Meyer C.
Synlett
2002,
45
7c
Boxer MB.
Yamamoto H.
J. Am.
Chem. Soc.
2006,
128:
48
7d
Boxer MB.
Yamamoto H.
Nat. Protoc.
2006,
1:
2434
7e
Boxer MB.
Yamamoto H.
J.
Am. Chem. Soc.
2007,
129:
2762
7f
Boxer MB.
Akakura M.
Yamamoto H.
J. Am. Chem. Soc.
2008,
130:
1580
8
Othman RB.
Bousquet T.
Othman M.
Dalla V.
Org. Lett.
2005,
7:
5335
9a
Nakashima D.
Yamamoto H.
Org.
Lett.
2005,
7:
1251
9b
Jung ME.
Ho DG.
Org.
Lett.
2007,
9:
375
10
Kawamura M.
Cui D.-M.
Shimada S.
Tetrahedron
2006,
62:
9201
11a
Zhang L.
Kozmin SA.
J.
Am. Chem. Soc.
2004,
126:
10204
11b
Sun J.
Kozmin SA.
J. Am. Chem. Soc.
2005,
127:
13512
11c
Zhang Y.
Hsung RP.
Zhang X.
Huang J.
Slafer BW.
Davis A.
Org. Lett.
2005,
7:
1047
11d
Yu SH.
Ferguson MJ.
McDonald R.
Hall DG.
J. Am. Chem.
Soc.
2005,
127:
12808
11e
Hashimoto T.
Naganawa Y.
Kano T.
Maruoka K.
Chem. Commun.
2007,
5143
11f
Ko C.
Feltenberger JB.
Ghosh SK.
Hsung RP.
Org.
Lett.
2008,
10:
1971
12a
Baldwin JE. In Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.63
12b
Lee-Ruff E.
Mladenova G.
Chem. Rev.
2003,
103:
1449
13
Crimmins MT. In Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Pergamon
Press;
Oxford:
1991.
p.123
14a
Ulrich H.
Cycloaddition
Reactions of Heterocumulenes
Academic Press;
London:
1967.
14b
Ahmad S.
Tetrahedron Lett.
1991,
32:
6997
15
Narasaka K.
Hayashi Y.
Shimadzu H.
Niihata S.
J. Am. Chem. Soc.
1992,
114:
8869
16
Yamazaki S.
Kumagai H.
Yamabe S.
Yamamoto K.
J. Org. Chem.
1998,
63:
3371
17a
Takasu K.
J. Pharm. Soc. Jpn.
2001,
121:
887
17b
Ihara M.
Chem.
Pharm. Bull.
2006,
54:
765
17c
Takasu K.
J.
Synth. Org. Chem. Jpn.
2008,
66:
554
18a
Clark RD.
Untch KG.
J.
Org. Chem.
1979,
44:
253
18b
Magnus P.
Rigollier P.
Lacour J.
Tobler H.
J. Am. Chem. Soc.
1992,
114:
3993
18c
Sweis RF.
Schramm
MP.
Kozmin SA.
J. Am. Chem. Soc.
2004,
126:
7442
18d
Ishihara K.
Nakano K.
J. Am. Chem. Soc.
2007,
129:
1746
19a
Takasu K.
Ueno M.
Inanaga K.
Ihara M.
J. Org. Chem.
2004,
69:
517
19b
Takasu K.
Nagao S.
Ueno M.
Ihara M.
Tetrahedron
2004,
60:
2071
19c
Takasu K.
Nagao S.
Ihara M.
Tetrahedron
Lett.
2005,
46:
1005
20a
Boxer MB.
Yamamoto H.
Org.
Lett.
2005,
7:
3127
20b
Avenoza A.
Busto JH.
Canal N.
Peregnina JM.
Perez-Fernandez M.
Org. Lett.
2005,
7:
3597
20c
Canales E.
Corey EJ.
J. Am. Chem. Soc.
2007,
129:
12686
21
Inanaga K.
Takasu K.
Ihara M.
J.
Am. Chem. Soc.
2005,
127:
3668
22a
Ayer WA.
Saeedi-Ghomi MH.
Can. J. Chem.
1981,
59:
2536
22b
Clericuzio M.
Mella M.
Toma L.
Finzi
PV.
Vidari G.
Eur.
J. Org. Chem.
2002,
988
Examples of Lewis acid promoted
(2+2) cycloadditions of activated alkynes:
23a
Snider BB.
Roush DM.
J.
Am. Chem. Soc.
1979,
101:
5283
23b
Franck-Neumann M.
Miesch M.
Gross L.
Tetrahedron
Lett.
1992,
33:
3879
23c
Miesch M.
Wendling F.
Eur. J. Org. Chem.
2000,
381
24
Takasu K.
Ishii T.
Inanaga K.
Ihara M.
Org. Synth.
2006,
83:
193
25a
Mathieu B.
Ghosez L.
Tetrahedron
Lett.
1997,
38:
5497
25b
Ishii A.
Kotera O.
Saeki T.
Mikami K.
Synlett
1997,
1145
25c
Mathieu B.
Ghosez L.
Tetrahedron
2002,
58:
8219
26
Takasu K.
Miyakawa Y.
Ihara M.
Tokuyama H.
Chem. Pharm. Bull.
2008,
56:
1205
27
Takasu K.
Hosokawa N.
Inanaga K.
Ihara M.
Tetrahedron Lett.
2006,
47:
6053
Knölker et al. reported
that (2+2) cycloadditions of allylsilanes with α,β-unsaturated
esters are promoted by stoichiometric amounts of TiCl4:
28a
Knölker H.-J.
Baum G.
Graf R.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
1612
28b
Knölker H.-J.
Baum E.
Schmitt O.
Tetrahedron Lett.
1998,
39:
7705
28c
Organ MG.
Dragan V.
Miller M.
Froese RDJ.
Goddard JD.
J. Org. Chem.
2000,
65:
3666
29a
Reissig H.-U.
Zimmer R.
Chem.
Rev.
2003,
103:
1151
29b
Yu M.
Pagenkopf BL.
Tetrahedron
2005,
61:
321
30a
Komatusu M.
Suehiro I.
Horiguchi Y.
Kuwajima I.
Synlett
1991,
771
30b
Horiguchi Y.
Suehiro I.
Sasaki A.
Kuwajima I.
Tetrahedron Lett.
1993,
34:
6077
30c
Yadav VK.
Sriramurthy V.
Angew.
Chem. Int. Ed.
2004,
43:
2669
31
Takasu K.
Nagao S.
Ihara M.
Adv.
Synth. Catal.
2006,
348:
2376
32
Multicomponent
Reactions
Zhu J.
Bienaymé H.
Wiley-VCH;
Weinheim:
2005.
33a
Ulaczyk-Lsesanko A.
Hall DG.
Curr.
Opin. Chem. Biol.
2005,
9:
266
33b
Zhu J.
Eur.
J. Org. Chem.
2003,
1133
33c
Ugi I.
Pure
Appl. Chem.
2001,
73:
187
33d
Dömling A.
Chem. Rev.
2006,
106:
17
34
Inanaga K.
Takasu K.
Ihara M.
J.
Am. Chem. Soc.
2004,
126:
1352
35 Definition of ‘auto-tandem
catalysis’: Fogg DE.
dos Santos EN.
Coord. Chem. Rev.
2004,
248:
2365
36
Wasilke J.-C.
Obrey SJ.
Baker RT.
Bazan GC.
Chem. Rev.
2005,
105:
1001
Recent representative examples
for an auto-tandem catalysis:
37a
Field LD.
Messerle BA.
Wren SL.
Organometallics
2003,
22:
4393
37b
Du H.
Zhang X.
Wang Z.
Ding K.
Tetrahedron
2005,
61:
9465
37c
Enders D.
Hüttl MRM.
Grondal C.
Raabe G.
Nature (London)
2006,
441:
861
37d
Shekhar S.
Trantow B.
Leitner A.
Hartwig JF.
J. Am. Chem. Soc.
2006,
128:
11770
38
Brasco MFR.
Seldes AM.
Palermo JA.
Org. Lett.
2001,
3:
1415
39
Takasu K.
Inanaga K.
Ihara M.
Tetrahedron
Lett.
2008,
49:
4220
40
Boger DL.
Weinreb SM.
Hetero
Diels-Alder Methodology in Organic Synthesis
Academic
Press;
San Diego:
1987.
41
Takasu K.
Shindoh N.
Tokuyama H.
Ihara M.
Tetrahedron
2006,
62:
11900
42
Povarov LS.
Russ.
Chem. Rev.
1967,
36:
656
43a
Shindoh N.
Tokuyama H.
Takasu K.
Tetrahedron Lett.
2007,
48:
4749
43b
Shindoh N.
Tokuyama H.
Takemoto Y.
Takasu K.
J. Org. Chem.
2008,
73:
7451
44
Shindoh N.
Tokuyama H.
Takemoto Y.
Takasu K.
Heterocycles
2009,
77:
187