Abstract
A novel methodology for the synthesis of 2-amino-4-aryl(alkyl)-6-sulfanyl
pyridine-3,5-dicarbonitriles via a one-pot, three-component reaction
of structurally diversified aldehydes with various S -alkylisothiouronium
salts and malononitrile in water has been developed. Utilization
of S -alkylisothiouronium salts as thiol equivalents
greatly broadens the application of the current method, and also
makes the reaction more environmentally friendly.
Key words
Multicomponent reactions - 2-amino-4-aryl(alkyl)-6-sulfanyl
pyridine-3,5-dicarbonitrile -
S -alkylisothiouronium
salts - thiols - green chemistry
References and Notes
<A NAME="RW03209ST-1A">1a </A>
Weber L.
Curr. Med. Chem.
2002,
9:
2085
<A NAME="RW03209ST-1B">1b </A>
Hulme C.
Gore V.
Curr. Med. Chem.
2003,
10:
51
<A NAME="RW03209ST-1C">1c </A>
Ramon
DJ.
Miguel Y.
Angew. Chem.
Int. Ed.
2005,
44:
1602
<A NAME="RW03209ST-1D">1d </A>
Orru RVA.
de Greef M.
Synthesis
2003,
1471
<A NAME="RW03209ST-1E">1e </A>
Ugi I.
Heck S.
Comb. Chem. High Throughput Screening
2001,
4:
1
<A NAME="RW03209ST-1F">1f </A>
Weber L.
Illgen K.
Almstetter M.
Synlett
1999,
366
<A NAME="RW03209ST-2A">2a </A>
Cocco MT.
Congiu C.
Lilliu V.
Onnis V.
Eur.
J. Med. Chem.
2005,
40:
1365 ;
and references cited therein
<A NAME="RW03209ST-2B">2b </A>
Perrier V.
Wallace AC.
Kaneko K.
Safar J.
Prusiner SB.
Cohen FE.
Proc. Natl. Acad. Sci.
U.S.A.
2000,
97:
6073
<A NAME="RW03209ST-2C">2c </A>
Reddy TRK.
Mutter R.
Heal W.
Guo K.
Gillet VJ.
Pratt S.
Chen B.
J.
Med. Chem.
2006,
49:
607
<A NAME="RW03209ST-2D">2d </A>
Guo K.
Mutter R.
Heal W.
Reddy TRK.
Cope H.
Pratt S.
Thompson MJ.
Chen B.
Eur. J. Med. Chem.
2008,
43:
93
<A NAME="RW03209ST-2E">2e </A>
Beukers MW.
Chang LCW.
von Frijtag Drabbe Künzel JK.
Mulder-Krieger T.
Spanjersberg RF.
Brussee J.
Ijzerman AP.
J. Med. Chem.
2004,
47:
3707
<A NAME="RW03209ST-2F">2f </A>
Chang LCW.
von Frijtag Drabbe Künzel JK.
Mulder-Krieger T.
Spanjersberg RF.
Roerink SF.
van den Hout G.
Beukers MW.
Brussee J.
Ijzerman AP.
J. Med. Chem.
2005,
48:
2045
<A NAME="RW03209ST-3A">3a </A>
Kambe S.
Saito K.
Synthesis
1981,
531
<A NAME="RW03209ST-3B">3b </A>
Matrosova SV.
Zav’yalova VK.
Litvinov VP.
Sharanin YA.
Izv. Akad. Nauk SSSR, Ser. Khim.
1991,
1643
<A NAME="RW03209ST-3C">3c </A>
Elnagdi MH.
Elghandour AHH.
Ibrahim
MKA.
Hafiz ISA.
Z. Naturforsch., B: Chem.
Sci.
1992,
47:
572
<A NAME="RW03209ST-3D">3d </A>
Dyachenko VD.
Krivokolysko SG.
Nesterov VN.
Litvinov VP.
Chem. Heterocycl. Compd.
1997,
33:
1430
<A NAME="RW03209ST-3E">3e </A>
Dyachenko VD.
Litvinov VP.
Chem.
Heterocycl. Compd.
1998,
34:
188
<A NAME="RW03209ST-3F">3f </A>
Dyachenko VD.
Litvinov VP.
Russ.
J. Org. Chem.
1998,
34:
557
<A NAME="RW03209ST-3G">3g </A>
Quintela JM.
Peinador C.
Veiga MC.
Botana
LM.
Alfonso A.
Riguera R.
Eur.
J. Med. Chem.
1998,
887
<A NAME="RW03209ST-3H">3h </A>
Attia AME.
Ismail AE.-HAA.
Tetrahedron
2003,
59:
1749
<A NAME="RW03209ST-3I">3i </A>
Evdokimov NM.
Magedov IV.
Kireev A.
Kornienko A.
Org.
Lett.
2006,
8:
899
<A NAME="RW03209ST-3J">3j </A>
Evdokimov NM.
Kireev AS.
Yakovenko AA.
Antipin MY.
Magedov IV.
Kornienko A.
J.
Org. Chem.
2007,
72:
3443
<A NAME="RW03209ST-3K">3k </A>
Ranu BC.
Jana R.
Sowmiah S.
J.
Org. Chem.
2007,
72:
3152
<A NAME="RW03209ST-4A">4a </A>
Zhao Y.
Ge ZM.
Cheng TM.
Li RT.
Synlett
2007,
10:
1529
<A NAME="RW03209ST-4B">4b </A>
Lei M.
Shi LX.
Li G.
Chen S.
Fang WH.
Ge ZM.
Cheng TM.
Li RT.
Tetrahedron
2007,
63:
7892
<A NAME="RW03209ST-5A">5a </A> Starks
C. M., Liotta C. L., Halpern M.; Phase-Transfer Catalysis: Fundamentals,
Applications, and Industrial Perspectives
Chapman & Hall;
New
York:
1994.
<A NAME="RW03209ST-5B">5b </A>
Halpern ME.
Benefts and Challenges
of Applying Phase-Transfer Catalysis Technology in the Pharmaceutical Industry , In Process Chemistry in the Pharmaceutical Industry
Gadamasetti KG.
Marcel
Dekker;
New York:
1999.
p.283
<A NAME="RW03209ST-5C">5c </A>
Masaya I.
Org.
Process Res. Dev.
2008,
12:
698
<A NAME="RW03209ST-5D">5d </A>
Takuya H.
Keiji M.
Chem. Rev.
2007,
107:
565
<A NAME="RW03209ST-6">6 </A>
Representative
Procedure for the Synthesis of Compound 3a
A mixture
of benzaldehyde (106 mg, 1 mmol), malononitrile (132 mg, 2 mmol),
NaOH (120 mg, 3 mmol), and SDS (29 mg, 0.1 mmol) in H2 O
(10 mL) was stirred for 10 min at r.t. The S -methylisothiouronium
sulfate (139 mg, 1 mmol) was added. The reaction mixture was further
stirred for 50 min until the completion of the reaction (monitored
by TLC). The reaction mixture was then filtered and washed with
H2 O to give the crude solid, which was recrystallized
from MeCN to furnish the crystals of 2-amino-4-phenyl-6-methyl-sulfanylpyridine-3,5-dicarbonitrile
(238 mg, 89%); mp 295-296 ˚C. ¹ H
NMR (300 MHz, CDCl3 ): δ = 2.59
(s, 3 H, SCH3 ), 5.67 (br s, 2 H, NH2 ), 7.50-7.55
(m, 5 H, Ph). ¹³ C NMR (75 MHz, DMSO-d
6 ): δ = 12.79,
85.55, 93.49, 115.31, 115.46, 128.42, 128.71, 130.33, 133.98, 158.17,
159.72, 167.53. Anal. Calcd for C14 H10 N4 S2 :
C, 63.14; H, 3.78; N, 21.04. Found: C, 63.13; H, 3.96; N, 21.24. This
procedure was followed for all the reactions listed in Table
[¹ ]
. The unknown compounds
were properly characterized by their spectroscopic (¹ H
NMR, ¹³ C NMR) and elemental analysis.
The known compounds were confirmed by ¹ H NMR
and mp which were consistent with the reported data (see Supporting
Information).