Subscribe to RSS
DOI: 10.1055/s-0029-1217552
CaSH Organocatalysis: Enantioselective Friedel-Crafts Alkylation of Indoles with α,β-Unsaturated Aldehydes
Publication History
Publication Date:
10 July 2009 (online)

Abstract
Enantioselective Friedel-Crafts alkylation of indole with α,β-unsaturated aldehyde was catalyzed by camphor sulfonyl hydrazine (CaSH) with good enantioselectivity (81-88%).
Key words
camphor sulfonyl hydrazine (CaSH) - organocatalysis - indole alkylation - α,β-unsaturated aldehydes
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Ahrendt KA.Borths CJ.MacMillan DWC. J. Am. Chem. Soc. 2000, 122: 4243 -
1b A similar term ‘organic catalysis’ first
appeared in the German literature:
Langenbeck W. Fortschr. Chem. Forsch. 1966, 6: 301 -
2a
Eder U.Sauer G.Wiechert R. Angew. Chem., Int. Ed. Engl. 1971, 10: 496 -
2b
Hajos ZG.Parrish DR. J. Org. Chem. 1974, 39: 1615 -
3a
Alessandro D.Alessandro M. Angew. Chem. Int. Ed. 2008, 47: 4638 -
3b
List B. Chem. Rev. 2007, 107: 5413 -
3c
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 -
3d
France S.Guerin DJ.Miller SJ.Lectka T. Chem. Rev. 2003, 103: 2985 -
3e
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2001, 40: 3726 -
4a
Notz W.Tanaka F.Barbas CF. Acc. Chem. Res. 2004, 37: 580 -
4b
Taylor MS.Jacobsen EN. Angew. Chem. Int. Ed. 2006, 45: 1520 - 5
Poulsen TB.Jørgensen KA. Chem. Rev. 2008, 108: 2903 -
6a
Bandini M.Molloni A.Umani-Ronchi A. Angew. Chem. Int. Ed. 2004, 43: 550 -
6b
Austin JF.Kim S.-G.Sinz CJ.Xiao W.-J.MacMillan DWC. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5482 -
7a
Erkkilä A.Majander I.Pihko PM. Chem. Rev. 2007, 107: 5416 -
7b
Mukherjee S.Yang JW.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471 -
7c
Juhl K.Jørgensen KA. . Angew. Chem. Int. Ed. 2003, 42: 1498 -
7d
Seayad J.List B. Org. Biomol. Chem. 2005, 3: 719 -
7e
Northrup AB.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 2458 -
8a
Austin JF.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 1172 -
8b
Paras NA.MacMillan DWC.
J. Am. Chem. Soc. 2001, 123: 4370 -
8c
Paras NA.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 7894 -
8d
Huang Y.Walji AM.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 15051 -
9a
King HD.Meng Z.Denhart D.Mattson R.Kimura R.Wu D.Gao Q.Macor JE. Org. Lett. 2005, 7: 3437 -
9b
Li C.-F.Liu H.Liao J.Cao Y.-J.Liu X.-P.Xiao W.-J. Org. Lett. 2007, 9: 1847 -
10a
Chen W.Du W.Chen YC. Org. Biomol. Chem. 2007, 5: 816 -
10b
Bartoli G.Bosco M.Melchiorre P. Org. Lett. 2007, 9: 1403 -
11a
Sander EG.Jencks WP. J. Am. Chem. Soc. 1968, 90: 6154 -
11b
Cavill JL.Elliott RL.Evans G.Jones IL.Platts JA.Ruda AM.Tomkinson NCO. Tetrahedron 2006, 62: 410 -
12a
Cavill JL.Peters JU.Tomkinson NCO. Chem. Commun. 2003, 728 -
12b
Gupta RR.Kumar M.Gupta V. Heterocyclic Chemistry Vol. 3: Springer; Heidelberg: 1999. -
12c
Lemay M.Ogilvie WW. Org. Lett. 2005, 7: 4141 -
12d
Lemay M.Ogilvie WW. J. Org. Chem. 2006, 71: 4663 -
12e
Lemay M.Aumand L.Ogilvie WW. Adv. Synth. Catal. 2007, 349: 441 -
13a
He H.Pei B.-J.Chou H.-H.Tian T.Chan W.-W.Lee AW.-M. Org. Lett. 2008, 10: 2421 -
13b
Langlois Y.Petit A.Remy P.Scherrmann MC.Kouklovsky C. Tetrahedron Lett. 2008, 49: 5576 -
13c
Chen L.-Y.He H.Pei B.-J.Chan WH.Lee AWM. Synthesis 2009, 1573
References and Notes
Aldehyde 3
(R¹ = Me): ¹H
NMR (400 MHz, CDCl3): δ = 9.75 (s,
1 H), 7.63 (d, J = 8.0
Hz, 1 H), 7.31 (m, 1 H), 7.26 (m, 1 H), 7.14 (m, 1 H), 6.84 (s,
1 H), 3.75 (s, 3 H), 3.68 (m, 1 H), 2.87 (m, 1 H), 2.71 (m, 1 H),
1.43 (d, J = 6.8
Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 203.1,
137.4, 126.8, 125.4, 121.9, 119.3, 119.0, 109.6, 51.2, 32.9, 26.1,
21.9 ppm.
Alcohol 4 was obtained
by NaBH4 reduction. Alcohol 4 (R¹ = Me): ¹H
NMR (400 MHz, CDCl3): δ = 7.64 (dd, J = 8.0, 0.8
Hz, 1 H), 7.30 (dd, J = 7.2,
0.8 Hz, 1 H), 7.23 (m, 1 H), 7.10 (m, 1 H), 6.85 (s, 1 H), 3.75
(s, 3 H), 3.66 (m, 1 H), 3.22 (m, 1 H), 2.06 (m, 1 H), 1.96 (m,
1 H), 1.40 (d, J = 6.8
Hz, 3 H) ppm.
General Experimental
Procedure for CaSH 1 Catalyzed Friedel-Crafts
Reaction of Indoles with α,β-Unsaturated Aldehydes
TFA
(0.15 mmol) was added to a solution of CaSH 1 (0.15 mmol)
in toluene (1 mL). The solution was stirred for 20 min and then
cooled to -40 ˚C. The α,β-unsaturated
aldehyde (1.5 mmol) was then added. After stirring for another 20 min,
the N-substituted indole (0.5 mmol) was added. The reaction was
stirred until complete consumption of the indoles as determined
by TLC. MeOH (2 mL) was added to the reaction mixture followed by
NaBH4 (3.0 mmol). The mixture was warmed to 0 ˚C
and stirred for 20 min. The reaction was quenched by H2O
and extracted with EtOAc. The organic solution was dried over anhyd
Na2SO4. The product 6 was
purified by silica gel chromatography (PE-EtOAc, 4:1).
The ee was determined by chiral HPLC (Chiracel AD-H) of the alcohol 6 (5% i-PrOH
in hexane
as eluent, 1 mL min-¹).
Spectroscopic
Data of Products 6 (Table 2)
Compound 6 (R² = Me): ¹H
NMR (400 MHz, CDCl3): δ = 7.74 (dd, J = 7.6, 0.8
Hz, 1 H), 7.33 (m, 4 H), 7.21 (m, 4 H), 6.96 (s, 1 H), 5.29 (s,
2 H), 3.30 (m, 2 H), 3.27 (m, 1 H), 2.08 (m, 1 H), 1.95 (m, 1H),
1.44 (d, J = 7.2
Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 138.0,
137.1, 129.0, 127.7, 127.6, 126.9, 124.6, 122.0, 121.1, 119.8, 119.1,
110.0, 61.7, 50.1, 40.6, 27.9, 22.1 ppm. HRMS (MALDI-TOF): m/z calcd for C19H22NO [M + H]+:
280.1696; found: 280.1695.
Compound 6 (R² = Et): ¹H
NMR (400 MHz, CDCl3): δ = 7.64 (d, J = 7.6, Hz,
1 H), 7.25 (m, 4 H), 7.14 (m, 1 H), 7.06 (m, 3 H) 6.88 (s, 1 H),
5.24 (s, 2 H), 3.56 (m, 2 H), 2.93 (m, 1 H), 1.98 (m, 2 H), 1.74
(m, 2H), 0.83 (t, J = 7.0
Hz, 3 H) ppm.
Compound 6 (R² = Pr): ¹H
NMR (400 MHz, CDCl3): δ = 7.69 (d, J = 8.0 Hz,
1 H), 7.33-7.24 (m, 4 H), 7.18 (m, 1 H), 7.17-7.06
(m, 3 H) 6.93 (s, 1 H), 5.29 (s, 2 H), 3.62 (m, 2 H), 3.05 (m, 1
H), 2.03 (m, 2 H), 1.18 (m, 2 H), 1.30 (m, 2 H), 0.88 (t, J = 7.2 Hz,
3 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 138.0,
137.1, 128.9, 127.8, 127.7, 126.7, 125.6, 121.8, 119.9, 119.0, 118.9,
110.0, 61.9, 50.0, 39.0, 38.9, 33.6, 21.0, 14.4 ppm.
Compound 6 (R² = Bu): ¹H
NMR (400 MHz, CDCl3): δ = 7.66 (d, J = 7.6 Hz,
1 H), 7.30-7.22 (m, 4 H), 7.14 (t, J = 7.6 Hz,
1 H), 7.09-7.03 (m, 3 H), 6.90 (s, 1 H), 5.27 (s, 2 H), 3.59
(m, 2 H), 3.01 (m, 1 H), 2.00 (m, 2 H), 1.78 (m, 2 H), 1.23 (m,
4 H), 0.83 (t, J = 7.2
Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 138.0,
137.1, 128.9, 127.8, 127.7, 126.7, 125.6, 121.8, 119.9, 119.0, 110.0,
61.9, 50.0, 39.0, 36.3, 33.8, 30.2, 23.0, 14.3 ppm.
Compound 6 (R² = Ph): ¹H
NMR (400 MHz, CDCl3): δ = 7.52 (m,
1 H), 7.38-7.07 (m, 12 H), 7.03 (m, 2 H), 5.30 (s, 2 H),
4.44 (t, J = 7.6
Hz, 1 H), 3.68 (m, 2 H), 2.48 (m, 1 H), 2.29 (m, 1 H) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 145.1, 138.0,
237.2, 129.0, 128.7, 128.1, 127.9, 127.8, 126.9, 126.4, 125.6, 122.1,
120.0, 119.3, 119.1, 109.9, 61.5, 50.2, 39.4, 39.0 ppm.
Compound 6 (R² = 4-ClC6H4): ¹H
NMR (400 MHz, CDCl3): δ = 7.41 (d, J = 8.0 Hz,
1 H), 7.33-7.22 (m, 8 H), 7.15 (m, 3 H), 7.01 (m, 2 H),
5.29 (s, 2 H), 4.40 (t, J = 7.6
Hz, 1 H), 3.64 (m, 2 H), 2.43 (m, 1 H), 2.22 (m, 1 H) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 143.6, 137.8,
137.2, 131.9, 129.4, 129.0, 128.7, 127.8, 127.6, 126.8, 125.5, 122.2,
119.8, 119.4, 118.5, 110.0, 61.2, 50.2, 38.8, 38.7 ppm.
Compound 6 (R² = 4-BrC6H4): ¹H
NMR (400 MHz, CDCl3): δ = 7.40 (m,
3 H), 7.37-7.18 (m, 6 H), 7.15-7.07 (m, 3 H), 6.99
(m, 2 H), 5.28 (s, 2 H), 4.38 (t, J = 8.0
Hz, 1 H), 3.62 (m, 2 H), 2.43 (m, 1 H), 2.22 (m, 1 H) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 144.1, 137.8,
137.2, 131.7, 129.8, 129.0, 127.8, 127.6, 126.8, 125.5, 122.2, 120.0,
119.8, 119.4, 118.4, 110.0, 61.2, 50.2, 38.8, 38.7 ppm.