References and Notes
1
Hoffmann-Röder A.
Krause N.
Angew. Chem. Int. Ed.
2004,
43:
1196
For selected recent books and reviews
for allene chemistry, see:
2a
Krause N.
Hashmi ASK. In Modern Allene Chemistry
Vol.
1:
Wiley-VCH;
Weinheim:
2004.
2b
Krause N.
Hashmi ASK. In Modern Allene Chemistry
Vol.
2:
Wiley-VCH;
Weinheim:
2004.
2c
Kwong CK.-W.
Fu MY.
Lam CS.-L.
Toy PH.
Synthesis
2008,
2307
2d
Ma S.
Chem.
Rev.
2005,
105:
2829
2e
Miesch M.
Synthesis
2004,
746
2f
Krause N.
Hoffmann-Röder A.
Tetrahedron
2004,
60:
11671
2g
Lu X.
Zhang C.
Xu Z.
Acc.
Chem. Res.
2001,
34:
535
3
Sakai N.
Hirasawa M.
Konakahara T.
Tetrahedron
Lett.
2005,
46:
6407
4a
Das B.
Damodar K.
Bhunia N.
Shashikanth B.
Tetrahedron
Lett.
2009,
50:
2072
4b
Das B.
Kanth BS.
Reddy KR.
Satyalakshmi G.
Kumar RA.
Chem.
Lett.
2008,
37:
512
5
Appel R.
Angew.
Chem., Int. Ed. Engl.
1975,
14:
801
6a
Alexakis A.
Marek I.
Mangeney P.
Normant JF.
J.
Am. Chem. Soc.
1990,
112:
8042
6b
Marek I.
Mangeney P.
Alexakis A.
Normant JF.
Tetrahedron Lett.
1986,
27:
5499
6c
Rona P.
Crabbe P.
J. Am. Chem. Soc.
1969,
91:
3289
6d
Rona P.
Crabbe P.
J. Am. Chem. Soc.
1968,
90:
4733
7a
Keinan E.
Bosch E.
J.
Org. Chem.
1986,
51:
4006
7b
Elsevier CJ.
Stehouwer PM.
Westmijze H.
Vermeer P.
J. Org.
Chem.
1983,
48:
1103
8a
Moreau J.-L.
Gaudemar M.
J.
Organomet. Chem.
1976,
108:
159
8b
Alexakis A.
Commercon A.
Villiéras J.
Normant JF.
Tetrahedron Lett.
1976,
2313
9
Wenkert E.
Leftin MH.
Michelotti EL.
J. Org. Chem.
1985,
50:
1122
10a
Riveiros R.
Rodriguez D.
Perez Sestelo J.
Sarandeses LA.
Org. Lett.
2006,
8:
1403
10b
Yoshida M.
Gotou T.
Ihara M.
Tetrahedron
Lett.
2004,
45:
5573
10c
Lee K.
Seomoon D.
Lee PH.
Angew.
Chem. Int. Ed.
2002,
41:
3901
10d
Pasto DJ.
Chou S.-K.
Waterhouse A.
Shults RH.
Hennion GF.
J. Org. Chem.
1978,
43:
1385
11a
Sanz R.
Miguel D.
Martinez A.
Alvarez-Gutierrez
JM.
Rodriguez F.
Org. Lett.
2007,
9:
727
11b
Huang W.
Wang J.
Shen Q.
Zhou X.
Tetrahedron
2007,
63:
11636
11c
Ishikawa T.
Aikawa T.
Mori Y.
Saito S.
Org. Lett.
2003,
5:
51
11d
Ishikawa T.
Okano M.
Aikawa T.
Saito S.
J. Org. Chem.
2001,
66:
4635
12a
Myers AG.
Zheng B.
J.
Am. Chem. Soc.
1996,
118:
4492
12b
Corey EJ.
Boaz NW.
Tetrahedron
Lett.
1984,
25:
3055
12c
Parker KA.
Petraitis JJ.
Tetrahedron
Lett.
1977,
4561
13
General Procedure
for the Synthesis of Allene Derivatives 2: CBr4 (331
mg, 1.0 mmol), Ph3P (262 mg, 1.0 mmol), propargylic alcohol 1 (0.50 mmol), i-Pr2NEt
(129 mg, 1.0 mmol), P(n-Bu)3 (10
mg, 0.05 mmol), and a freshly distilled toluene (1 mL) were successively
added into a screw-capped vial, and the vial was sealed with a cap containing
a PTFE septum. The reaction mixture was stirred at 100 ˚C,
and monitored by TLC until the propargylic alcohol 1 was
consumed. To quench the reaction, H2O (2 mL) was added
to the mixture. The mixture was extracted with CH2Cl2 (3 ×),
and the combined organic extracts were dried over Na2SO4,
filtered, and then evaporated under reduced pressure. The crude
product was purified by silica gel chromatography(hexane) to produce
the allene derivative 2, and if necessary,
was further purified by a recycling preparative HPLC equipped with
a GPC column (chloroform as an eluent). Spectral data for selected compound:
1-(3-Bromo-1,2-nonadien-1-yl)benzene (2a): pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 0.86
(t, 3 H, J = 7.2 Hz), 1.24-1.38
(m, 6 H), 1.50 (quint, 2 H, J = 7.2 Hz),
2.52 (td, 2 H, J = 7.2, 3.0
Hz), 6.19 (t, 1 H, J = 3.0 Hz), 7.23-7.27
(m, 1 H), 7.32-7.33 (m, 4 H). ¹³C
NMR (75 MHz, CDCl3): δ = 13.9, 22.5,
27.9, 28.2, 31.4, 38.0, 96.1, 100.3, 127.7, 128.1, 128.7, 133.0,
199.8. MS (FAB): m/z (%) = 281 (100) [M+],
279 (40) [M+]. HRMS (FAB): m/z calcd
for C15H20Br: 279.0748; found: 279.0726.
14a
Guo C.
Lu X.
J.
Chem. Soc., Perkin Trans. 1
1993,
1921
14b
Trost BM.
Kazmaier U.
J. Am.
Chem. Soc.
1992,
114:
7933
14c
Trost BM.
Schmidt T.
J. Am. Chem. Soc.
1988,
110:
2301
14d
Lu X.
Ma D.
Pure Appl. Chem.
1990,
62:
723
15 When the same reaction was conducted
with CCl4 instead of CBr4, the corresponding
chlorinated allene derivative was obtained in 40% yield.
For a selected paper on the SN2-type chlorination of
a primary alcohol using CCl4 and PPh3, see: Lee JB.
Downie IM.
Tetrahedron
1967,
23:
359
16
General Procedure
for the Synthesis of Diene Derivatives 3: The same procedure
as above without i-Pr2NEt
gave the diene derivative 3. However, formation
of a quite small amount of the (1Z,3E)-diene along with the (1E,3E)-diene separable
by column chromatography was observed by NMR. Spectral data for
selected compound: [(1E,3E)-3-Bromo-1,3-nonadien-1-yl]benzene
(3a): pale brown oil. ¹H NMR
(300 MHz, CDCl3): δ = 0.88 (t, 3 H, J = 7.2 Hz), 1.27 (m, 3 H),
1.35 (m, 1 H), 1.47 (m, 2 H), 2.35 (q, 2 H, J = 7.2 Hz),
6.08 (t, 1 H, J = 7.2 Hz), 6.73
(d, 1 H, J = 15.0 Hz), 6.89 (d,
1 H, J = 15.0 Hz), 7.23 (m,
1 H), 7.30 (m, 2 H), 7.42 (m, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 13.9, 22.4,
28.1, 31.4, 31.7, 126.7, 126.9, 127.7, 127.9, 128.6, 128.7, 132.1,
135.3. MS (EI): m/z = 279 [M+].
HRMS (FAB): m/z calcd
for C15H20Br: 279.0748; found: 279.0728. Stereochemistry (1E,3E) of the
isolated compound was determined by
the chemical shift
and coupling constant of the related compound. Specific peaks derived
from (1Z,3E)-diene 3a were observed by ¹H
NMR. ¹H NMR: δ = 5.87 (t,
1 H, J = 7.2 Hz), 6.76 (d, 2
H, J = 15.0 Hz), 6.94 (d, 1
H, J = 15.0 Hz). Other peaks
overlapped with those of the (1E,3E)-diene.
17 We have no clear cause for the low
yield of diene derivative 3; however, formation
of several complex products, which were probably derived from the
starting propargylic alcohol, was observed by an NMR measurement.
18a
Slagle JD.
Huang TTS.
Franzus B.
J.
Org. Chem.
1981,
46:
3526
18b
Jones LA.
Sumner CE.
Franzus B.
Huang TTS.
Snyder EI.
J. Org. Chem.
1978,
43:
2821