References and Notes
1
Enders D.
Huttl MRM.
Grondal C.
Raabe G.
Nature (London)
2006,
441:
861
2
Ho TL.
Carbocycle Construction in Terpene Synthesis
Wiley-VCH;
Weinheim:
1988.
For examples, see:
3a
Ramachary DB.
Reddy YV.
Prakash BV.
Org. Biomol. Chem.
2008,
6:
719
3b
Ishikawa H.
Suzuki T.
Hayashi Y.
Angew.
Chem. Int. Ed.
2009,
48:
1304
For reviews of this concept, see:
4a
Tietze LF.
Chem. Rev.
1996,
96:
115
4b
Nicolaou KC.
Montagnon T.
Snyder SA.
Chem. Commun.
2003,
551
4c
Zhe J.
Bienaymé H.
Multicomponent
Reactions
1st ed.:
Wiley-VCH;
Weinheim:
2005.
4d
Ramón DJ.
Yus M.
Angew. Chem.
Int. Ed.
2005,
44:
1602
4e
Nicolaou KC.
Edmonds DJ.
Bulger PG.
Angew. Chem. Int. Ed.
2006,
45:
7134
4f
Tietze LF.
Brasche G.
Gericke K.
Domino Reactions in Organic
Synthesis
Wiley-VCH;
Weinheim:
2006.
4g
Guo HC.
Ma JA.
Angew. Chem. Int. Ed.
2006,
45:
354
4h
Enders D.
Grondal C.
Huttl MRM.
Angew. Chem. Int. Ed.
2007,
46:
1570
4i
Tejedor D.
García-Tellado F.
Chem. Soc.
Rev.
2007,
36:
484
4j
Guillena G.
Ramón DJ.
Yus M.
Tetrahedron:
Asymmetry
2007,
18:
693
4k
Padwa A.
Bur SK.
Tetrahedron
2007,
63:
5341
4l
Yua XH.
Wang W.
Org. Biomol. Chem.
2008,
6:
2037
5
Hashimoto T.
Maruoka K.
Chem. Rev.
2007,
107:
5656
6
Trost BM.
Science
1991,
254:
1471
7a
Hong BC.
Wu MF.
Tseng HC.
Liao JH.
Org. Lett.
2006,
8:
2217
7b
Enders D.
Narine AA.
Benninghaus TR.
Raabe G.
Synlett
2007,
1667
7c
Sridharan V.
Menendez JC.
Org. Lett.
2008,
10:
4303
7d
Cabrera S.
Aleman J.
Bolze P.
Bertelsen S.
Jørgensen KA.
Angew.
Chem. Int. Ed.
2008,
47:
121
7e
Hong BC.
Nimje RY.
Sadani AA.
Liao JH.
Org. Lett.
2008,
10:
2345
8
Carlone A.
Cabrera S.
Marigo M.
Jørgensen KA.
Angew.
Chem. Int. Ed.
2007,
46:
1101
9a
Hayashi Y.
Okano T.
Aratake S.
Hazelard D.
Angew. Chem.
Int. Ed.
2007,
46:
4922
9b
Penon O.
Carlone A.
Mazzanti A.
Locatelli M.
Sambri L.
Bartoli G.
Melchiorre P.
Chem.
Eur. J.
2008,
14:
4788
9c
Tan B.
Chua PJ.
Li YX.
Zhong GF.
Org. Lett.
2008,
10:
2437
9d
Enders D.
Huttl MRM.
Raabe G.
Bats JW.
Adv. Synth.Catal.
2008,
350:
267
9e
Zhao GL.
Dziedzic P.
Ullah F.
Eriksson L.
Cordova A.
Tetrahedron Lett.
2009,
50:
3458
10a
Reyes E.
Jiang H.
Milelli A.
Elsner P.
Hazell RG.
Jørgensen KA.
Angew.
Chem. Int. Ed.
2007,
46:
9202
10b
Ruano JLG.
Marcos V.
Suanzes JA.
Marzo L.
Aleman J.
Chem. Eur. J.
2009,
15:
6576
11a
Quaternary Stereocenters. Challenges and Solutions
for Organic Synthesis
Christoffers J.
Baro A.
Wiley-VCH;
Weinheim:
2005.
11b
Cozzi PG.
Hilgraf R.
Zimmermann N.
Eur. J. Org. Chem.
2007,
5969
12a Synthesis
of 1a,c,d: Pinto DCGA.
Silva AMS.
Levai A.
Cavaleiro JAS.
Patonay T.
Elguero J.
Eur. J.
Org. Chem.
2000,
2593
12b Synthesis of 1b: Silva AMS.
Pinto DCGA.
Tavares HR.
Cavaleiro JAS.
Jimeno ML.
Elguero J.
Eur.
J. Org. Chem.
1998,
2031
12c Synthesis of 1h: Santos CMM.
Silva AMS.
Cavaleiro JAS.
Levai A.
Patonay T.
Eur.
J. Org. Chem.
2007,
2877
13
General Procedure
for the Syntheses of 1e-g
An aqueous solution
of NaOH (60%, 25 mL) was slowly added to a methanolic solution
(30 mL) of appropiate acetophenone (5.0 mmol). After cooling the
solution to r.t., cinnamaldehyde (792 mg, 6.0 mmol) was added. The mixture
was stirred at r.t. for 20 h, and then it was poured into H2 O
(100 mL), ice (100 g), and HCl (pH adjusted to ca. 2). The solid
obtained was removed by filtration, dissolved in CHCl3 (50
mL), and washed with an aq solution of NaHCO3 (5%,
30 mL). The organic layer was collected, dried over anhyd Na2 SO4 ,
and the solution evaporated to dryness. The residue was purified
by silica gel column chromatography using CH2 Cl2 as
eluent. Finally, the isolated compounds were recrystallized from
EtOH.
Selected Data for 1g
Yellow
solid (1.13 g, 84% yield); 143-144 ˚C. ¹ H
NMR (300.13 MHz, CDCl3 , 20 ˚C): δ = 7.04-7.01
(m, 2 H, H-4, H-5), 7.05 (d, ³
J
trans
= 15.0
Hz, 1 H, H-2), 7.41-7.30 (m, 3 H, H-3′′,5′′,
H-4′′), 7.52-7.44 (m, 4 H, H-2′′,6′′,
H-3′,5′), 7.65-7.57 (m, 1 H, H-3), 7.92
(AA′BB ′, ³
J
AB = 8.6,
Hz, 4
J
AA
′ = 2.2
Hz, 5
J
AB
′ = 1.9
Hz, 2 H, H-2′,6′) ppm. ¹³ C
NMR (125.77 MHz, CDCl3 , 20 ˚C): δ = 124.8
(C-2), 126.7 (C-5), 127.4 (C-2′′,6′′),
128.9 (C-3′,5′, C-3′′,5′′),
129.4 (C-4′′), 129.8 (C-2′,6′),
136.0 (C-1′′), 136.5 (C-1′), 139.1 (C-4′), 142.4
(C-4), 145.4 (C-3), 189.1 (C-1) ppm. Anal. Calcd: C, 75.98; H, 4.88.
Found: C, 75.92; H, 4.86.
14
General Procedure
for the Synthesis of 2a-g
To a stirred 0.2
M solution of the appropriate 1,5-diaryl-penta-2,4-dien-1-ones 1 (0.085 mmol) in MeCN (0.43 mL) was added
TBAB (9.2 mg, 0.028 mmol), Cs2 CO3 (27.7 mg, 0.085),
and MeNO2 (2.3 µL, 0.043 mmol). The mixture
was stirred at r.t. for 20 h, quenched with H2 O (5 mL),
and extracted with CH2 Cl2 (3 × 5
mL). The combined organic extracts were dried over MgSO4 .
Evaporation of the solvent under reduced pressure afforded an oil,
which was purified by column chromatography (hexane-EtOAc = 9:1
as eluent) and crystallized (hexane-EtOAc) to afford the
desired products 2a -g as single diastereomers.
Selected Data for (
E
,
E
,1
R
*,2
S
*,3
S
*,4
S
*,5
S
*)-2-Benzoyl-1-hydroxy-4-nitro-1-phenyl-3,5-distyrylcyclohexane
(2a)
White solid (17.7 mg, 79% yield; Figure
[³ ]
); 227-229 ˚C. ¹ H NMR
(500.13 MHz, CDCl3 , 20 ˚C): δ = 2.00
(ddd, J = 14.4, 12.2,
2.6 Hz, 1 H, H-6B), 2.20 (dd, J = 14.4,
4.1 Hz, 1 H, H-6A), 3.72-3.84 (m, 2 H, H-3, H-5), 4.14
(d, J = 11.6
Hz, 1 H, H-2), 4.64 (t, J = 11.1
Hz, 1 H, H-4), 5.34 (d, J = 2.6
Hz, 1 H, OH), 5.71 (dd, J = 15.7,
9.8 Hz, 1 H, H-α′), 6.03 (dd, J = 15.7,
8.8 Hz, 1 H, H-α′′), 6.36 (d, J = 15.7 Hz,
1 H, H-β′), 6.56 (d, J = 15.7
Hz, 1 H, H-β′′), 6.85-6.87 (m,
2 H, H-2′′′,6′′′),
7.10-7.11 (m, 4 H, H-3′,5′, H-3′′′,5′′′),
7.20-7.31 (m, 9 H, H-2′′′′,6′′′′,
H-3′′,5′′, H-3′′′′,5′′′′,
H-4′, H-4′′′, H-4′′′′),
7.42 (t, J = 8.3
Hz, 1 H, H-4′′), 7.45 (dd, J = 8.3,
1.0 Hz, 2 H, H-2′,6′), 7.56 (dd, J = 8.3,
1.2 Hz, 2 H, H-2′′,6′′) ppm. ¹³ C
NMR (125.77 MHz, CDCl3 , 20 ˚C): δ = 40.9
(C-5), 44.0 (C-6), 45.6 (C-3), 53.2 (C-2), 74.3 (C-1), 94.1 (C-4), 123.9
(C-α′′), 124.5 (C-2′,6′),
126.4 (CAr ), 126.5 (C-2′′′,6′′′), 126.6
(C-α′), 127.4 (CAr ), 127.8 (CAr ),
127.9 (CAr ), 128.1 (C-2′′,6′′),
128.2 (CAr ), 128.4 (CAr ), 128.5 (CAr ),
128.6 (CAr ), 133.5 (C-β′′),
133.6 (C-4′′), 135.5 (C-β′),
135.8 (C-1′′′), 136.4 (C-1′′′′),
137.8 (C-1′′), 144.7 (C-1′), 205.0 (C=O) ppm.
HRMS (ESI+ ): m/z calcd
for [C35 H31 NO4 + Na]+ : 552.2145;
found: 552.2147. Anal. Calcd: C, 79.37; H, 5.90; N, 2.64. Found:
C, 78.97; H, 5.91; N, 2.73.
Figure 3
15
Crystal Data
C35 H31 NO4 , M = 529.61,
monoclinic, space group P 21 /n, Z = 4, a = 5.6904
(2) Å, b = 15.8717
(5) Å, c = 31.4292
(9) Å, β = 91.793 (2)˚, V = 2837.18
(16) ų , colorless needles with crystal
size of 0.20 × 0.08 × 0.06 mm³ .
Of a total of 34281 reflections collected, 7584 were independent (R
int = 0.0843).
Final R 1 = 0.0588 [I > 2σ(I) ] and wR 2 = 0.1497
(all data). CCDC-743412 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
16 Nonhydrogen atoms are represented
as thermal ellipsoids drawn at the 50% probability level
and hydrogen atoms as small spheres with arbitrary radii. For simplicity
only one position of the disordered phenyl group is represented. Hydrogen-bonding
geometry details of the intramolecular O-H˙˙˙O
interaction (dashed green line): dO
˙˙˙
O = 2.6726
(19) Å and <(DHA) = 141.3˚.
17
Park DY.
Gowrisankar S.
Kim N.
Tetrahedron
Lett.
2006,
47:
6641