Synlett 2010(1): 97-100  
DOI: 10.1055/s-0029-1218575
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Sequential Catalytic Reactions for the Synthesis of Benzofulvenes Using an Iridium Complex with Dual Function

Kyoji Tsuchikama, Mitsugu Kasagawa, Kohei Endo, Takanori Shibata*
Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo, Shinjuku, Tokyo, 169-8555, Japan
Fax: +81(3)52868098; e-Mail: tshibata@waseda.jp;
Further Information

Publication History

Received 21 October 2009
Publication Date:
11 December 2009 (online)

Abstract

The cationic iridium complex ([Ir(cod)2]OTf + rac-­BINAP) efficiently catalyzed a sequential process of ortho-C-H bond functionalization, cyclization and dehydration, leading to a concise preparation of 1-methylene indene (benzofulvene) derivatives. The iridium complex operated as a catalyst in the ortho-C-H bond alkenylation of aryl ketones with alkynes and as a Lewis acid catalyst in the cyclization of the alkenylated product and the subsequent dehydration.

    References and Notes

  • For recent reviews, see:
  • 1a Wasilke J.-C. Obrey SJ. Baker RT. Bazan GC. Chem. Rev.  2005,  105:  1001 
  • 1b Nicolaou KC. Edmonds DJ. Bulger PG. Angew. Chem. Int. Ed.  2006,  45:  7134 
  • For selected examples, see:
  • 2a Kojima A. Takemoto T. Sodeoka M. Shibasaki M. J. Org. Chem.  1996,  61:  4876 
  • 2b Son SU. Choi DS. Chung YK. Lee S.-G. Org. Lett.  2000,  2:  2097 
  • 2c Milton MD. Onodera G. Nishibayashi Y. Uemura S. Org. Lett.  2004,  6:  3993 
  • 2d Aubert C. Fensterbank L. Gandon V. Malacria M. Top. Organomet. Chem.  2006,  19:  259 
  • 2e Bruneau C. Dérien S. Dixneuf PH. Top. Organomet. Chem.  2006,  19:  295 
  • 2f Zhang X. Liu A. Chen W. Org. Lett.  2008,  10:  3849 
  • For selected examples, see:
  • 3a Mitsudo T. Suzuki N. Kobayashi T. Kondo T. J. Mol. Catal. A: Chem.  1999,  137:  253 
  • 3b Nevado C. Echavarren AM. Tetrahedron  2004,  60:  9735 
  • 3c Guo R. Morris RH. Song D. J. Am. Chem. Soc.  2005,  127:  516 
  • 3d Leclerc J.-P. André M. Fagnou K. J. Org. Chem.  2006,  71:  1711 
  • 3e Ashfeld BL. Miller KA. Smith AJ. Tran K. Martin SF. J. Org. Chem.  2007,  72:  9018 
  • 3f Liu X. Huang L. Zheng F. Zhan Z. Adv. Synth. Catal.  2008,  350:  2778 
  • 3g Tanaka K. Okazaki E. Shibata Y. J. Am. Chem. Soc.  2009,  131:  10822 
  • For selected reviews of direct C-H bond functionalization, see:
  • 4a Handbook of C-H Transformations: Applications in Organic Synthesis   Dyker G. Wiley-VCH Verlag GmbH; Weinheim: 2005. 
  • 4b Alberico D. Scott ME. Lautens M. Chem. Rev.  2007,  107:  174 
  • 4c Kakiuchi F. Kochi T. Synthesis  2008,  3013 
  • 4d Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed.  2009,  48:  5094 
  • For selected examples of Ir-catalyzed C-H bond functionalization, see:
  • 5a Aufdenblatten R. Diezi S. Togni A. Monatsh. Chem.  2000,  131:  1345 
  • 5b Matsumoto T. Taube DJ. Periana RA. Taube H. Yoshida H. J. Am. Chem. Soc.  2000,  122:  7414 
  • 5c Nishinaka Y. Satoh T. Miura M. Morisaka H. Nomura M. Matsui H. Yamaguchi C. Bull. Chem. Soc. Jpn.  2001,  74:  1727 
  • 5d Fukumoto Y. Sawada K. Hagihara M. Chatani N. Murai S. Angew. Chem. Int. Ed.  2002,  41:  2779 
  • 5e Dorta R. Togni A. Chem. Commun.  2003,  760 
  • 5f Tenn WJ. Young KJH. Bhalla G. Oxgaard J. Goddard WA. Periana RA. J. Am. Chem. Soc.  2005,  127:  14172 
  • 5g Ishiyama T. Miyaura N. Pure Appl. Chem.  2006,  78:  1369 
  • 5h Lu B. Falck JR. Angew. Chem. Int. Ed.  2008,  47:  7508 
  • 5i Join B. Yamamoto T. Itami K. Angew. Chem. Int. Ed.  2009,  48:  3644 
  • For our recent reports of cationic Ir-catalyzed C-H bond functionalization, see:
  • 6a Tsuchikama K. Kasagawa M. Hashimoto Y. Endo K. Shibata T. J. Organomet. Chem.  2008,  693:  3939 
  • 6b Tsuchikama K. Kasagawa M. Endo K. Shibata T. Org. Lett.  2009,  11:  1821 
  • 6c

    Tsuchikama, K.; Hashimoto, Y.; Endo, K.; Shibata, T. Adv. Synth. Catal. in press.

  • 7 For several reactions using Ir complexes as a Lewis acid catalyst, see: Shibata T. In Iridium Complexes in Organic Synthesis   Oro LA. Claver C. Wiley-VCH Verlag GmbH; Weinheim: 2009.  p.277 
  • 8 The synthesis of poly-benzofulvene and the analysis of its physical properties have been reported, see: Cappelli A. Galeazzi S. Giuliani G. Anzini M. Donati A. Zetta L. Mendichi R. Aggravi M. Giorgi G. Paccagnini E. Vomero S. Macromolecules  2007,  40:  3005 ; and references cited therein
  • 9 For a review of ion-pairing effects in transition-metal catalysis, see: Macchioni A. Chem. Rev.  2005,  105:  2039 
  • 11 Similar regioselectivity was observed in the Ru-catalyzed ortho-C-H bond addition of meta-substituted acetophenones to vinylsilanes, see: Kakiuchi F. Murai S. Acc. Chem. Res.  2002,  35:  826 
  • 13 The relatively bulky phenyl group was situated at the external position against the aromatic ring of the aryl ketone. The same regioselectivity was also reported in the Ru-catalyzed directed C-H alkenylation of aryl ketones with unsymmetrical alkynes, see: Kakiuchi F. Yamamoto Y. Chatani N. Murai S. Chem. Lett.  1995,  681 
  • 14 TsOH-catalyzed cyclization of ortho-alkenylated aromatic ketones for the synthesis of benzofulvenes, see: Harris PWR. Woodgate PD. Synth. Commun.  1997,  27:  4195 
  • The cyclization of arylimines and alkynes using a rhenium catalyst afforded aminoindenes. The authors proposed intramolecular 1,2-addition of the rhenium-carbon bond to the imine moiety in the reaction mechanism, see:
  • 15a Kuninobu Y. Kawata A. Takai K. J. Am. Chem. Soc.  2005,  127:  13498 
  • 15b Kuninobu Y. Nishina Y. Kawata A. Shouho M. Takai K. Pure Appl. Chem.  2008,  80:  1149 
10

Typical experimental procedure (Table  [¹] , entry 1):
[Ir(cod)2]OTf (10.9 mg, 20 µmol), rac-BINAP (12.6 mg, 20 µmol), and diphenylacetylene (1a; 37.7 mg, 0.21 mmol) were placed in an oven-dried Schlenk tube, which was then evacuated and backfilled with argon (× 3). To the reaction vessel were added 2-methoxyacetophenone (2b; 60.1 mg, 0.40 mmol) and PhCl (0.2 mL, pretreated by argon bubbling for 30 s) before the solution was stirred at 135 ˚C for 24 h. The resultant mixture was cooled to room temperature and filtered through a silica pad. After evaporation of the solvent, the crude products were purified by thin-layer chromatog-raphy (hexane-EtOAc, 10:1) to yield analytically pure product 3ab (62.4 mg, 95%). Yellow solid; mp 95 ˚C. ¹H NMR (400 MHz): δ = 3.98 (s, 3 H), 5.84 (d, J = 1.5 Hz, 1 H), 6.73 (d, J = 1.5 Hz, 1 H), 6.86 (d, J = 8.3 Hz, 1 H), 7.01 (d, J = 7.6 Hz, 1 H), 7.18-7.28 (m, 11 H); ¹³C NMR (100 MHz): δ = 55.3, 109.0, 113.5, 119.8, 121.5, 126.8, 127.2, 127.9, 128.1, 129.0, 129.6, 130.9, 134.6, 134.7, 138.2, 140.7, 144.6, 146.5, 156.2; IR (KBr): 1599, 1442, 1260, 1083, 700 cm; HRMS (FAB+): m/z calcd for C23H18O: 310.1358; found: 310.1351.

12

The geometry was determined by NOESY measurement.