References and Notes
1 Part 189 in the series ‘Studies
on novel synthetic methodologies’.
2a
Singh H.
Chala S.
Kapoor VK.
Paul D.
Malhotra RK.
Prog. Med. Chem.
1980,
17:
151
2b
Butler RN. In Comprehensive Heterocyclic
Chemistry
Vol. 4:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon;
Oxford:
1996.
2c
Jursic BS.
LeBlanc BW.
J.
Heterocycl. Chem.
1998,
35:
405
2d
Ostrovskii VA.
Pevzner MS.
Kofmna TP.
Shcherbinin MB.
Tselinskii IV.
Targets
in Heterocyclic Systems
Vol. 3:
Societa
Chimica Italiana;
Rome:
1999.
p.467-526
2e
Hert RJ.
Bioorg. Med. Chem.
2002,
10:
3379
3
Moderhack D.
J.
Prakt. Chem./Chem.-Ztg.
1988,
340:
687
4a
Dunica JV.
Pierce ME.
Santella JB.
J.
Org. Chem.
1991,
56:
2395
4b
Wittenberger SJ.
Org. Prep. Proced. Int.
1994,
26:
499
4c
Kumar A.
Narayanan R.
Shechter H.
J.
Org. Chem.
1996,
61:
4462
4d
Koguro K.
Oga T.
Mitsui S.
Orita R.
Synthesis
1998,
910
4e
Curran DP.
Hadida S.
Kim SY.
Tetrahedron
1999,
55:
8997
5a
Demko ZP.
Sharpless KB.
J. Org. Chem.
2001,
66:
7945
5b
Demko ZP.
Sharpless KB.
Org.
Lett.
2002,
4:
2525
5c
Himo F.
Demko ZP.
Noodleman L.
Sharpless KB.
J. Am. Chem. Soc.
2003,
125:
9983
6a
Amantini D.
Beleggia R.
Fringuelli F.
Pizzo F.
Vaccaro L.
J. Org. Chem.
2004,
69:
2896
6b
Kantam
ML.
Kumar KBS.
Raja KP.
J. Mol. Catal. A: Chem.
2006,
247:
186
7a
Das B.
Satyalakshmi G.
Suneel K.
Tetrahedron Lett.
2009,
50:
2770
7b
Das B.
Balasubramanyam P.
Krishnaiah M.
Veeranjaneyulu B.
Reddy GC.
J.
Org. Chem.
2009,
74:
4393
7c
Das B.
Damodar K.
Bhunia N.
J.
Org. Chem.
2009,
74:
5607
8
Breton GW.
J.
Org. Chem.
1997,
62:
8952
9a
Ahn S.
Reddy JP.
Kariuki BM.
Chatarjee S.
Ranganathan A.
Pedireddy VR.
Rao CNR.
Harris
KDM.
Chem. Eur. J.
2005,
11:
2433
9b
Devender T.
Bharathi DV.
Manikyamba P.
Indian
J. Chem., Sect. A
2008,
47:
863
10
La Bourdonnec B.
Meulon E.
Yous S.
Goossens J.-F.
Houssin R.
Henichart J.-P.
J. Med. Chem.
2000,
43:
2685
11
Matthews DP.
Green JE.
Shuker AJ.
J. Comb. Chem.
2000,
2:
19
12
Nishiyama K.
Yamaguchi T.
Synthesis
1988,
106
13
Typical experimental
procedure using NaHSO
4
˙SiO
2
: To a mixture of benzonitrile (2.0 mmol)
and NaN3 (3.0 mmol) in DMF (5 mL), NaHSO4˙SiO2 (0.09
g) was added. The mixture was stirred at 120 ˚C
for 10 h until the reaction was complete (reaction monitored
by TLC). The catalyst was removed by filtration and washed with
EtOAc (2 × 5 mL). The filtrate
was treated with EtOAc (30 mL) and 4 M HCl (20 mL) and
stirred vigorously. The organic layer was separated and the aqueous
layer was extracted with EtOAc (2 × 10
mL). The combined organic extracts were washed with H2O
(2 × 10 mL) and concentrated.
The crude product was subjected to column chromatography (silica
gel; hexane-EtOAc) to obtain pure 5-phenyl tetrazole (91%).
Typical experimental procedure using
I
2
: To a mixture of benzonitrile
(2.0 mmol) and NaN3 (3.0 mmol) in DMF (5 mL),
I2 (0.03 g) was added and the mixture was stirred at 120 ˚C.
After completion of the reaction (10 h), the mixture was treated
with EtOAc (30 mL) and 4 M HCl (20 mL) and stirred
vigorously. The organic layer was separated and the aqueous layer
was extracted with EtOAc (2 × 10 mL).
The combined organic portion was washed with saturated sodium thiosulfate
solution (2 × 10 mL) and H2O (2 × 10 mL)
and subsequently concentrated. The residue was purified by column
chromatography (silica gel; hexane-EtOAc) to afford pure
5-phenyl tetrazole (89%).
Spectroscopic data of
representative novel compounds: 2c: IR:
3442, 1598, 1563,1484, 1411 cm-¹; ¹H
NMR (200 MHz, DMSO-d
6): δ = 7.91
(1 H, br s), 7.84 (1 H, d, J = 8.0
Hz), 7.40 (1 H, t, J = 8.0
Hz), 7.30 (1 H, d, J = 8.0
Hz), 2.45 (3 H, s); ¹³C NMR
(50 MHz, DMSO-d
6): δ = 155.7,
138.6, 131.1, 128.2, 127.4, 123.8, 20.2; MS (ESI): m/z = 161 [M + H]+; HRMS
(ESI): m/z [M + H]+ calcd
for C8H9N4: 161.0827; found: 161.0830. 2d: IR: 3477, 1663, 1603, 1515, 1317 cm-¹; ¹H
NMR (200 MHz, DMSO-d
6): δ = 7.30
(2 H, d, J = 8.0 Hz),
6.62 (2 H, d, J = 8.0
Hz), 5.43 (2 H, br s); ¹³C
NMR (50 MHz, DMSO-d
6): δ = 157.6,
151.2, 132.1, 119.0, 112.2; MS (ESI): m/z = 162 [M + H]+;
Anal. Calcd for C7H7N5: C, 52.17;
H, 4.35; N, 3.11. Found: C, 52.28; H, 4.29; N, 3.17. 2h:
IR: 3507, 1709, 1564, 1431, 1286 cm-¹; ¹H
NMR (200 MHz, DMSO-d
6): δ = 8.20
(2 H, d, J = 8.0
Hz), 8.11 (2 H, d, J = 8.0 Hz),
3.91 (3 H, s); ¹³C NMR (50
MHz, DMSO-d
6):
δ = 155.8,
132.2, 131.2, 130.0, 129.1, 126.3, 51.4; MS (ESI): m/z = 205 [M + H]+;
HRMS (ESI): m/z [M + H]+ calcd
for C9H9N4O2: 205.0725;
found: 205.0735. 2k: IR: 3453, 1628, 1527,
1482 cm-¹; ¹H NMR
(200 MHz, DMSO-d
6): δ = 9.42 (1 H,
d, J = 8.0
Hz), 8.41 (1 H, d, J = 8.0 Hz),
7.56 (1 H, t, J = 8.0
Hz); ¹³C NMR (50 MHz, DMSO-d
6): δ = 155.8, 147.1,
140.6, 131.0, 128.2, 127.1; MS (ESI): m/z = 182, 183 [M + H]+;
Anal. Calcd for C6H4ClN5: C, 39.67;
H, 2.20; N, 38.57. Found: C, 39.78; H, 2.14; N, 38.63. 2n: IR: 3426, 1648, 1237 cm-¹; ¹H
NMR (200 MHz, DMSO-d
6): δ = 10.46 (1 H,
br s), 4.50 (2 H, q, J = 7.0
Hz), 1.42 (3 H, t, J = 7.0 Hz); ¹³C
NMR (50 MHz, DMSO-d
6): δ = 157.1,
151.6, 54.6, 14.8; MS (ESI): m/z = 143 [M + H]+;
Anal. Calcd for C4H6N4O2:
C, 33.80; H, 4.23; N, 39.44. Found: C, 33.91; H, 4.28; N, 39.37.