Subscribe to RSS
DOI: 10.1055/s-0029-1219199
Fluorine-Containing Furan Derivatives from the Michael Addition of Ethyl 4,4,4-Trifluoro-3-oxobutanoate with β-Nitrostyrenes
Publication History
Publication Date:
14 January 2010 (online)
Abstract
Ethyl 4,4,4-trifluoro-3-oxobutanoate reacted with nitrostyrenes in the presence of Et3N to afford ethyl 5-(hydroxyimino)-4-aryl-2-(trifluoromethyl)-2,5-dihydrofuran-3-carboxylates along with a small amount of ethyl 2-hydroxy-5-imino-4-aryl-2-(trifluoromethyl)-2,5-dihydrofuran-3-carboxylates. Treatment of ethyl 5-(hydroxyimino)-4-aryl-2-(trifluoromethyl)-2,5-dihydrofuran-3-carboxylates with 1.2 equivalents of TsOH in t-BuOH, afforded ethyl 2-hydroxy-5-imino-4-aryl-2-(trifluoromethyl)-2,5-dihydrofuran-3-carboxylates in good yields. However, ethyl 2-ethoxy or methoxy-5-oxo-4-aryl-2-(trifluoromethyl)-2,5-dihydrofuran-3-carboxylates were obtained as major products in EtOH or MeOH along with a small amount of ethyl 2-hydroxy-5-imino-4-aryl-2-(trifluoromethyl)-2,5-dihydrofuran-3-carboxylates.
Key words
Michael addition - cyclization - fluorine-containing furans - 4,4,4-trifluoro-3-oxobutanone - β-nitro-stryene
- Supporting Information for this article is available online:
- Supporting Information
- 1
Perlmuter P. In Conjugate Addition Reaction in Organic Synthesis Pergamon; Oxford: 1992. -
2a
The Nitro Group in Organic Synthesis
One N. Wiley-VCH; New York: 2001. -
2b
Nef JU. Justus Liebigs Ann. Chem. 1984, 280 -
2c
Ghosh AK.Bilcer G.Schiltz G. Synthesis 2001, 2203 -
2d
Ballini R.Petrini M. Tetrahedron 2004, 60: 1017 -
3a
Wang W.Wang J.Li H. Angew. Chem. Int. Ed. 2005, 44: 1369 -
3b
Mendler B.Kazmaier U.Huch V.Veith M. Org. Lett. 2005, 7: 2643 -
3c
Ji J.Barnes DM.Zhang J.King SA.Wittenberger SJ.Morton HE. J. Am. Chem. Soc. 1999, 121: 10215 -
3d
Barnes DM.Ji J.Fickes MG.Fitzgerald MA.King SA.Morton HE.Plagge FA.Preskill M.Wittenberger SJ.Zhang J.
J. Am. Chem. Soc. 2002, 124: 13097 -
3e
Evans DA.Seidel D. J. Am. Chem. Soc. 2005, 127: 9985 -
4a
Ansell GB.Moore DW.Nielsen AT. Chem. Comm. 1970, 1602 -
4b
Ansell GB.Moore DW.Nielsen AT. J. Chem. Soc. B 1971, 2376 -
5a
Boerg F.Schutze GR. Chem. Ber. 1957, 90: 1215 -
5b
Yanami T.Ballatore A.Miyashita M.Kato M.Yoshikoshi A. J. Chem. Soc., Perkin Trans. 1 1978, 1144 - 6
Ishikawa T.Miyahara T.Asakura M.Higuchi S. Org. Lett. 2005, 7: 1211 - 7
Bégué JP.Bonnet-Delpon D.Dogbeavou A. J. Fluorine Chem. 1999, 54: 278 -
8a
Organofluorine Compounds. Chemistry and Applications
Hiyama T. Springer; New York: 2000. -
8b
Organofluorine
Chemistry: Principles and Commercial Applications
Banks RE.Smart BE.Tatlow JC. Plenum Press; New York: 1994. -
8c
Fluorine
in Bioorganic Chemistry
Welch JT.Eshwarakrishman S. Wiley; New York: 1991. -
8d
Fluorine-Containing
Molecules. Structure, Reactivity, Synthesis, and Applications
Liebman JF.Greenberg A.Dolbier WR. VCH; Weinheim: 1988. -
9a
Li XF.Song LP.Xing CH.Zhao JW.Zhu SZ. Tetrahedron 2006, 62: 2255 -
9b
Li DM.Song LP.Li XF.Xing CH.Peng WM.Zhu SZ. Eur. J. Org. Chem. 2007, 3520 -
9c
Li DM.Song LP.Song SD.Zhu SZ. J. Fluorine Chem. 2007, 128: 952 -
9d
Song SD.Song LP.Dai BF.Yi H.Jin GF.Zhu SZ.Shao M. Tetrahedron 2008, 64: 5728 -
9e
Dai BF.Song LP.Wang PY.Yi H.Cao WG.Jin GF.Zhu SZ.Shao M. Synlett 2009, 1842 -
14a
Connolly JD.Hill RA. Dictionary of Terpenoids Vol. 1: Chapman and Hall; London: 1991. p.476-541 -
14b
Koch SSC.Chamberlin AR. J. Org. Chem. 1993, 58: 2725 ; and references therein
References and Notes
General Procedures
for the Reaction of 1 with 2
To a 10 mL round-bottom
flask containing ethyl 4,4,4-trifluoro-3-oxobutanoate 1 (368.0 mg, 2.0 mmol)was added DME (3.0
mL), 2a (298.0 mg, 2.0 mmol), and Et3N
(0.4 mmol). The resulting mixture was stirred at refluxing temperature.
After stirring for 4.5 h, the TLC analysis showed that the reaction
was finished. The solvent was evaporated, and the residue was purified
by column chromatography on a silica gel using PE-EtOAc
(5:1, v/v) as eluent to afford 3a (523.0
mg, 83%) along with a small amount of 4a (31.0
mg, 5%).
Spectroscopic
Data for Products 3 and 4
Compound 3a:
colorless solid; mp 129-130 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.18
(t, J = 7.2
Hz, 3 H), 4.17 (qd, J = 7.2
Hz, J
AB = 10.8
Hz, 1 H), 4.25 (qd, J = 7.2
Hz, J
AB = 10.8
Hz, 1 H), 5.80 (q,
³
J
H-F = 5.1
Hz, 1 H), 7.13 (br, 1 H), 7.42-7.51 (m, 5 H). ¹³C
NMR (75.5 MHz, CDCl3): δ = 13.6,
62.0, 82.4 (q,
²
J
C-F = 34.6
Hz), 121.9 (q,
¹
J
C-F = 282.0
Hz), 127.3, 128.1, 129.4, 130.3, 130.4, 143.4, 158.8, 160.7. ¹9F
NMR (282 MHz, CDCl3): δ = -76.52
(d,
³
J
H-F = 5.1
Hz, 3 F). IR (KBr): 3412, 2986, 2917, 1720, 1662, 1497, 1252, 1151,
1003, 935, 692 cm-¹. MS (70 eV, EI): m/z (%) = 315
(100) [M+], 270 (38.8) [M - OEt]+,
246 (52.3) [M - CF3]+,
69 (7.5) [CF3
+].
Anal. Calcd for C14H12F3NO4: C,
53.33; H, 3.81; N, 4.44. Found: C, 53.45; H, 3.85; N, 4.30.
Compound 4a: colorless solid; mp 110-112 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.21
(t, J = 7.2
Hz, 3 H), 4.30 (q, J = 7.2
Hz, 2 H), 5.50 (s, 1 H), 6.84 (s, 1 H), 7.26-7.54 (m, 5
H). ¹9F NMR (282 MHz, CDCl3): δ = -80.58
(s, 3 F). IR (KBr): 3318, 2987, 1728, 1645, 1197, 1069, 733, 695
cm-¹. MS (70 eV, EI): m/z (%) = 315
(3.6) [M+], 270 (4.3) [M - OEt]+,
246 (34.4) [M - CF3]+,
200(100) [M - CF3 - EtOH]+, 69
(6.0) [CF3
+]. Anal.
Calcd for C14H12F3NO4:
C, 53.33; H, 3.81, N, 4.44. Found: C, 53.72; H, 3.95; N, 4.10.
CCDC 292367 contains the supplementary crystallographic data. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033.
13
General Experimental
Procedure for the Transformation of 3 to 4 and 5
Reflux
the solution of 3 (0.5 mmol), in ROH (3.0
mL) with 1.2 equiv (0.6 mmol, 103.0 mg) of TsOH for ca. 4 h, TLC showed
that 3 was completely transformed into 4 and 5 in different
ratios, which were correlated with the size of R in the ROH. Compounds 4 and 5 were separated
and purified by column chromatography on a silica gel using PE-EtOAc (10:1,
v/v) as eluent.
Spectroscopic
Data for Products 5
Compound 5a:
colorless solid; mp 49-50 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.26
(t, J = 7.2
Hz, 3 H), 1.34 (t, J = 7.2 Hz,
3 H), 3.74 (qd, J = 7.2
Hz, J
AB = 8.4
Hz, 1 H), 3.83 (qd, J = 7.2
Hz, J
AB = 8.4
Hz, 1 H), 4.34 (q, J = 7.2
Hz, 2 H), 7.43-7.51 (m, 3 H), 7.62-7.65 (m, 2
H). ¹³C NMR (75.5 MHz, CDCl3): δ = 13.6,
14.6, 61.3, 62.7, 102.6 (q,
²
J
C-F = 35.6
Hz), 120.5 (q, ¹
J
C-F = 286.1
Hz), 126.8, 128.7, 129.0, 131.2, 137.9, 141.0, 161.4, 166.3. ¹9F
NMR (282 MHz, CDCl3): δ = -80.51
(s, 3 F). IR (KBr): 2988, 1797, 1736, 1657, 1448, 1226, 1196 cm-¹.
MS (70 eV, EI): m/z (%) = 344
(1.8) [M+], 299 (11.0) [M - OEt]+,
275 (27.9) [M - CF3]+,
201 (64.3) [M - OEt - Et - CF3]+,
69 (9.2) [CF3
+]. Anal.
Calcd for C16H15F3O5:
C, 55.81; H, 4.36. Found: C, 55.93; H, 4.41.