Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2010(9): 1377-1380
DOI: 10.1055/s-0029-1219832
DOI: 10.1055/s-0029-1219832
LETTER
© Georg Thieme Verlag
Stuttgart ˙ New York
The Halogenation of Aliphatic C-H Bonds with Peracetic Acid and Halide Salts
Further Information
Received
3 February 2010
Publication Date:
15 April 2010 (online)
Publication History
Publication Date:
15 April 2010 (online)
Abstract
Hydrocarbons react with molar concentrations of peracetic acid and halide salts to yield predominantly monohalogenated products under optimum conditions, with chlorination being more oxidatively efficient than bromination. The alkane halogenation proceeds at ambient temperature and does not require a heavy-metal catalyst. The observed reactivity is consistent with a radical mechanism, in which the peracid initially reacts with the halide ions to yield halogen-atom radicals, which ultimately oxidize the hydrocarbon. Although the reactivity proceeds slightly more efficiently in acetonitrile, the halogenation protocol works well in water.
Key words
alkanes - oxidation - halogenation - free radicals - green chemistry
- Supporting Information for this article is available online:
- Supporting Information
- 1
Shilov AE.Shul’pin GB. Chem. Rev. 1997, 97: 2879 - 2
Lersch M.Tilset M. Chem. Rev. 2005, 105: 2471 - 3
Davies HML.Beckwith REJ. Chem. Rev. 2003, 103: 2861 - 4
Fiedler D.Leung DH.Bergman RG.Raymond KN. Acc. Chem. Res. 2004, 38: 349 - 5
Fulmer DA.Shearouse WC.Medonza ST.Mack J. Green Chem. 2009, 11: 1821 - 6
Cohen A.Crozet MD.Rathelot P.Vanelle P. Green Chem. 2009, 11: 1736 - 7
Miyaura N.Yanagi T.Suzuki A. Synth. Commun. 1981, 11: 513 - 8
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 16: 4467 - 9
Larock RC. Comprehensive Organic Transformations 2nd ed.: Wiley-VCH; New York / NY: 1999. - 10
Gribble GW. Acc. Chem. Res. 1998, 31: 141 - 11
Metrangolo P.Resnati G. Science 2008, 321: 918 - 12
Podgoršek A.Zupan M.Iskra J. Angew. Chem. Int. Ed. 2009, 48: 8424 - 13
Stowers KJ.Sanford MS. Org. Lett. 2009, 11: 4584 - 14
Yang L.Lu Z.Stahl SS. Chem. Commun. 2009, 6460 - 15
Kalyani D.Sanford MS. J. Am. Chem. Soc. 2008, 130: 2150 - 16
Xia J.-B.You S.-L. Org. Lett. 2009, 11: 1187 - 17
Kakiuchi F.Kochi T.Mutsutani H.Kobayashi N.Urano S.Sato M.Nishiyama S.Tanabe T. J. Am. Chem. Soc. 2009, 131: 11310 - 18
Bogdal D.Lukasiewicz M.Pielichowski J. Green Chem. 2004, 6: 110 - 19
Kojima T.Matsuo H.Matsuda Y. Chem. Lett. 1998, 1085 - 20
Banks DF.Huyser ES.Kleinberg J. J. Org. Chem. 2002, 29: 3692 - 21
Breslow R.Link T. Tetrahedron Lett. 1992, 33: 4145 - 22
Zielinksa A.Skulski L. Tetrahedron Lett. 2004, 45: 1087 - 23
Leising RA.Zang Y.Que L. J. Am. Chem. Soc. 1991, 113: 8555 - 24
Kojima T.Leising RA.Yan S.Que L. J. Am. Chem. Soc. 1993, 115: 11328 - 25
Tanemura K.Suzuki T.Nishida Y.Horaguchi T. Tetrahedron Lett. 2008, 49: 6419 - 26
Zhuk TS.Gunchenko PA.Korovai YY.Schreiner PR.Fokin AA. Theor. Exp. Chem. 2008, 44: 48 - 27
Jiang X.Shen M.Tang Y.Li C. Tetrahedron Lett. 2005, 46: 487 - 28
Tian Z.Fattahi A.Lis L.Kass SR. J. Am. Chem. Soc. 2006, 128: 17087 - 29
Podgoršek A.Stavber S.Zupan M.Iskra J. Tetrahedron Lett. 2006, 47: 7245 - 30
Jia Z.Margerum DW.Francisco JS. Inorg. Chem. 2000, 39: 2614 - 31
El Dusouqui OMH.El Nadi ARH.Hassan M.Yousif G. J. Chem. Soc., Perkin Trans. 2 1976, 357 - 32
El Dusouqui OMH.Hassan M.El Nadi ARH.Yousif G. J. Chem. Soc., Perkin Trans. 2 1976, 359 - 33
Deacon H. J. Chem. Soc. 1872, 25: 725 - 34
Awad MI.Denggerile A.Ohsaka T. J. Electrochem. Soc. 2004, 151: E358 - 35
Giessen NA. Ber. Deutsch. Chem. Ges. 1914, 47: 247 - 36
Dieter RK.Nice LE.Velu SE. Tetrahedron Lett. 1996, 37: 2377