RSS-Feed abonnieren
DOI: 10.1055/s-0029-1220744
© Georg Thieme Verlag KG Stuttgart · New York
Gene Therapy in Thyroid Cancer
Publikationsverlauf
received 17.02.2009
accepted 09.04.2009
Publikationsdatum:
11. Mai 2009 (online)

Abstract
A variety of promising gene therapy approaches have been examined for treatment of follicular cell-derived and medullary thyroid cancer, including corrective gene therapy, cytoreductive gene therapy as well as immunomodulatory gene therapy. In addition, cloning of the NIS gene has provided us with a powerful cytoreductive gene therapy strategy based on targeted NIS gene transfer followed by radionculide (131I, 188Re, 211At) therapy. The data summarized in this article clearly demonstrate the high potential of currently available gene therapy approaches for future therapy of advanced dedifferentiated and medullary thyroid cancer, in particular as part of a multimodality approach. One of the major hurdles on the way to clinical application of gene therapy approaches in metastasized thyroid cancer is optimal tumor-specific targeting in the presence of low toxicity. Replication-selective viral vectors and novel biodegradable polymers as highly efficient nonviral vectors seem to be most promising candidates for the development of efficient and safe systemic gene therapy strategies. The bystander effect that is associated with some of the above listed gene therapy strategies provides a powerful means to compensate for the limited tumor spread of viral and nonviral vectors. Based on its dual function as therapy and reporter gene allowing noninvasive imaging by 123I-scintigraphy and 124I-PET imaging, NIS gene therapy offers the advantage of detailed characterization of in vivo vector biodistribution as well as localization, level, and duration of transgene expression – an essential prerequisite for exact planning and monitoring of clinical gene therapy trials with the aim of individualized therapy.
Key words
gene therapy - follicular cell-derived thyroid cancer - medullary thyroid cancer - sodium iodide symporter
References
- 1
Sherman SI.
Thyroid carcinoma.
Lancet.
2003;
361
501-511
MissingFormLabel
- 2
Spitzweg C, Harrington KJ, Pinke LA, Vile RG, Morris JC.
The sodium iodide symporter and its potential in cancer therapy.
J Clin Endocrinol Metab.
2001;
86
3327-3335
MissingFormLabel
- 3
Barzon L, Pacenti M, Boscaro M, Palu G.
Gene therapy for thyroid cancer.
Expert Opin Biol Ther.
2004;
4
1225-1239
MissingFormLabel
- 4
Spitzweg C, Morris JC.
Gene therapy for thyroid cancer: current strategies and future prospects.
Thyroid.
2004;
14
424-434
MissingFormLabel
- 5
DeGroot LJ, Zhang R.
Viral mediated gene therapy for the management of metastatic thyroid carcinoma.
Curr Drug Targets Immune Endocr Metab Disord.
2004;
4
235-243
MissingFormLabel
- 6
Nagayama Y, Shigematsu K, Namba H, Zeki K, Yamashita S, Niwa M.
Inhibition of angiogenesis and tumorigenesis, and induction of dormancy by p53 in
a p53-null thyroid carcinoma cell line in vivo.
Anticancer Res.
2000;
20
2723-2728
MissingFormLabel
- 7
Kim S-B, Ahn I-M, Park H-J, Park J-S, Cho H-J, Gong G, Suh C, Lee J-S, Kim W-K, Kim SHB.
Growth inhibition and chemosensitivity of poorly differentiated human thyroid cancer
cell line (NPA) transfected with p53 gene.
Head Neck.
2001;
23
223-229
MissingFormLabel
- 8
Nagayama Y, Yokoi H, Takeda K, Hasegawa M, Nishihara E, Namba H, Yamashita S, Niwa M.
Adenovirus-mediated tumor suppressor p53 gene therapy for anaplastic thyroid carcinoma
in vitro and in vivo.
J Clin Endocrinol Metab.
2000;
85
4081-4086
MissingFormLabel
- 9
Narimatsu M, Nagayama Y, Akino K, Yasuda M, Yamamoto T, Yang TT, Ohtsuru A, Namba H, Yamashita S, Ayabe H, Niwa M.
Therapeutic usefullness of wild-type p53 gene introduction in a p53-null anaplastic
thyroid carcinoma cell line.
J Clin Endocrinol Metab.
1998;
83
3668-3672
MissingFormLabel
- 10
Imanishi R, Ohtsuru A, Iwamatsu M, Iioka T, Namba H, Seto S, Yano K, Yamashita S.
A histone deacetylase inhibitor enhances killing of undifferentiated thyroid carcinoma
cells by p53 gene therapy.
J Clin Endocrinol Metab.
2002;
87
4821-4824
MissingFormLabel
- 11
Moretti F, Nanni S, Farsetti A, Narducci M, Crescenzi M, Giuliacci S, Sacchi A, Pontecorvi A.
Effects of exogenous p53 transduction in thyroid tumor cells with different p53 status.
J Clin Endocrinol Metab.
2000;
85
302-308
MissingFormLabel
- 12
Barzon L, Gnatta E, Castagliuolo I, Trevisan M, Moretti F, Pontecorvi A, Boscaro M, Palu G.
Modulation of retrovirally driven therapeutic genes by mutant TP53 in anaplastic thyroid
carcinoma.
Cancer Gene Ther.
2005;
12
381-388
MissingFormLabel
- 13
Hassan I, Wunderlich A, Burchert A, Hoffmann S, Zielke A.
Antisense p53 oligonucleotides inhibit proliferation and induce chemosensitivity in
follicular thyroid cancer cells.
Anticancer Res.
2006;
26
1171-1176
MissingFormLabel
- 14
McIver B, Grebe SKG, Eberhardt NL.
The PAX8/PPARg fusion oncogene as a potential therapeutic target in folicular thyroid
carcinoma.
Curr Drug Targets Immune Endocr Metab Disord.
2004;
4
221-234
MissingFormLabel
- 15
Martelli ML, Iuliano R, Pera I, Sama I, Monaco C, Cammarota S, Kroll T, Chiariotti L, Santoro M, Fusco A.
Inhibitory effects of peroxisome proliferator-activated receptor g on thyroid carcinoma
cell growth.
J Clin Endocrinol Metab.
2002;
87
4728-4735
MissingFormLabel
- 16
Cerutti JM, Delcelo R, Amadei MJ, Nakabashi C, Maciel RM, Peterson B, Shoemaker J, Riggins GJ.
A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma
based on gene expression.
J Clin Invest.
2004;
113
1234-1242
MissingFormLabel
- 17
Latini FRM, Hemerly JP, Oler G, Riggins GJ, Cerutti JM.
Re-expression of ABI3-binding protein suppresses thyroid tumor growth by promoting
senescence and inhibiting invasion.
Endocr Relat Cancer.
2008;
15
787-799
MissingFormLabel
- 18
Drosten M, Frilling A, Stiewe T, Pützer BM.
A new therapeutic approach in medullary thyroid cancer treatment: Inhibition of oncogenic
RET signaling by adenoviral vector-mediated expression of a dominant-negative RET
mutant.
Surgery.
2002;
132
991-997
MissingFormLabel
- 19
Drosten M, Pützer BM.
Gene therapeutic approaches for medullary thyroid carcinoma treatment.
J Mol Med.
2003;
81
411-419
MissingFormLabel
- 20
Du Z-X, Zhang H-Y, Gao D-X, Wang H-Q, Li Y-J, Liu G-L.
Antisurvivin oligonucleotides inhibit growth and induce apoptosis in human medullary
thyroid carcinoma cells.
Exp Mol Med.
2006;
38
230-240
MissingFormLabel
- 21
Nishihara E, Nagayama Y, Mawatari F, Tanaka K, Namba H, Niwa M, Yamashita S.
Retrovirus-mediated Herpes simplex virus thymidine kinase gene transduction renders
human thyroid carcinoma cell lines sensitive to ganciclovir and radiation in vitro
and in vivo.
Endocrinology.
1997;
138
4577-4583
MissingFormLabel
- 22
Braiden V, Nagayama Y, Iitaka M, Namba H, Niwa M, Yamashita S.
Retrovirus-mediated suicide gene/prodrug therapy targeting thyroid carcinoma using
a thyroid-specific promoter.
Endocrinology.
1998;
139
3996-3999
MissingFormLabel
- 23
Nagayama Y, Nishihara E, Iitaka M, Namba H, Yamashita S, Niwa M.
Enhanced efficacy of transcriptionally targeted suicide gene/prodrug therapy for thyroid
carcinoma with the Cre-loxP system.
Cancer Res.
1999;
59
3049-3052
MissingFormLabel
- 24
Zhang R, Straus FH, DeGroot LJ.
Adenoviral-mediated gene therapy for thyroid carcinoma using thymidine kinase controlled
by thyroglobulin promoter demonstrates high specificity and low toxicity.
Thyroid.
2001;
11
115-123
MissingFormLabel
- 25
Zhang R, Straus FH, DeGroot LJ.
Cell-specific viral gene therapy of a Hurthle cell tumor.
J Clin Endocrinol Metab.
2002;
87
1407-1414
MissingFormLabel
- 26
Takeda T, Inaba H, Yamazaki M, Kyo S, Miyamoto T, Suzuki S, Ehara T, Kakizawa T, Hara M, De Groot LJ, Hashizume K.
Tumor-specific gene therapy for undifferentiated thyroid carcinoma utilizing the telomerase
reverse transcriptase promoter.
J Clin Endocrinol Metab.
2003;
88
3531-3538
MissingFormLabel
- 27
Kitazono M, Chuman Y, Aikou T, Fojo T.
Construction of gene therapy vectors targeting thyroid cells: enhancement of activity
and specificity with histone deacetylase inhibitors and agents modulating the cyclic
adenosine 3',5'-monophospahte pathway and demonstration of activity in follicular
and anaplastic thyroid carcinoma cells.
J Clin Endocrinol Metab.
2001;
86
834-840
MissingFormLabel
- 28
Takeda T, Yamazaki M, Minemura K, Imai Y, Inaba H, Suzuki S, Miyamoto T, Ichikawa K, Kakizawa T, Mori J-I, DeGroot LJ, Hashizume K.
A tandemly repeated thyroglobulin core promoter has potential to enhance efficacy
for tissue-spcififc gene therapy for thyroid carcinoma.
Cancer Gene Ther.
2002;
9
864-874
MissingFormLabel
- 29
Shimura H, Suzuki H, Miyazaki A, Furuya F, Ohta K, Haraguchi K, Endo T, Onaya T.
Transcriptional activation of the thyroglobulin promoter directing suicide gene expression
by thyroid transcrption factor-1 in thyroid cancer cells.
Cancer Res.
2001;
61
3640-3646
MissingFormLabel
- 30
Chun YS, Saji M, Zeiger MA.
Overexpression of TTF-1 and PAX-8 restores thyroglobulin gene promoter activity in
ARO and WRO cell lines.
Surgery.
1998;
124
1100-1105
MissingFormLabel
- 31
Ye C, Feng C, Wang S, Liu X, Lin Y, Li M.
Antiangiogenic and antitumor effects of endostatin on follicular thyroid carcinoma.
Endocrinology.
2002;
143
3522-3528
MissingFormLabel
- 32
Zhang R, DeGroot LJ.
Gene therapy of established medullary thyroid carcinoma with Herpes simplex viral
thymidine kinase in a rat tumor model: relationship of bystander effect and antitumor
efficacy.
Thyroid.
2000;
10
313-319
MissingFormLabel
- 33
Messina M, Yu DMT, Learoyd DL, Both GW, Molloy PL, Robinson BG.
High level, tissue-specific expression of a modified calcitonin/calcitonin gene-related
peptide promoter in a human medullary thyroid carcinoma cell line.
Mol Cell Endocrinol.
2000;
164
219-224
MissingFormLabel
- 34
Messina M, Yu DMT, Both GW, Molloy PL, Robinson BG.
Calcitonin-specific transcription and splicing targets gene-directed enzyme prodrug
therapy to medullary thyroid carcinoma cells.
J Clin Endocrinol Metab.
2003;
88
1310-1318
MissingFormLabel
- 35
Jiang S, Altmann A, Grimm D, Kleinschmidt JA, Schilling T, Germann C, Haberkorn U.
Tissue-specific gene expression in medullary thyroid carcinoma cells employing calcitonin
regulatory elements and AAV vectors.
Cancer Gene Ther.
2001;
8
469-472
MissingFormLabel
- 36
Minemura K, Takeda T, Minemura K, Nagasawa T, Zhang R, Leopardi R, DeGroot LJ.
Cell-specific induction of sensitivity to ganciclovir in medullary thyroid carcinoma
cells by adenovirus-mediated gene transfer of herpes simplex virus thymididne kinase.
Endocrinology.
2000;
141
1814-1822
MissingFormLabel
- 37
Zhang R, DeGroot LJ.
Gene therapy of a rat follicular thyroid carcinoma model with adenoviral vectors transducing
murine interleukin-12.
Endocrinology.
2003;
144
1393-1398
MissingFormLabel
- 38
Tanaka K, Towata S, Nakao K, Mizuguchi H, Hayakawa T, Niwa M, Ishii N, Nagayama Y.
Thyroid cancer immunotherapy with retroviral and adenoviral vectors expressing granulocyte
macrophage colony stimulating factor and interleukin-12 in a rat model.
Clin Endocrinol.
2003;
59
734-742
MissingFormLabel
- 39
Zhang R, DeGroot LJ.
An adenoviral vector expressing functional heterogeneous proteins herpes simplex viral
thymidine kinase and human interleukin-2 has enhanced in vivo antitumor activity against
medullary thyroid carcinoma.
Endocr Relat Cancer.
2001;
8
315-325
MissingFormLabel
- 40
Soler MN, Milhaud G, Lekmine F, Treilhou-Lahille F, Klatzmann D, Lausson S.
Treatment of medullary thyroid carcinoma by combined expression of suicide and interleukin-2
genes.
Cancer Immunol Immunother.
1999;
48
91-99
MissingFormLabel
- 41
Yamazaki M, Straus FH, Messina M, Robinson BG, Takeda T, Hasizume K, DeGroot LJ.
Adenovirus-mediated tumor-specific combined gene therapy using Herpes simplex virus
thymidine/ganciclovir system and murine interleukin-12 induces effective antitumor
activity against medullary thyroid carcinoma.
Cancer Gene Ther.
2004;
11
8-15
MissingFormLabel
- 42
Barzon L, Bonaguro R, Castagliuolo I, Chilosi M, Franchin E, Vecchio C, Giaretta I, Boscaro M, Palu G.
Gene therapy of thyroid cancer via retrovirally-driven combined expression of human
interleukin-2 and Herpes simplex virus thymidine kinase.
Eur J Endocrinol.
2003;
148
73-80
MissingFormLabel
- 43
Barzon L, Pacenti M, Taccaliti A, Franchin E, Bruglia M, Boscaro M, Palu G.
A pilot study of combined suicide/cytokine gene therapy in two patients with end-stage
anaplastic thyroid carcinoma.
J Clin Endocrinol Metab.
2005;
90
2831-2834
MissingFormLabel
- 44
Barzon L, Bonaguro R, Castagliuolo I, Chilosi M, Gnatta E, Parolin C, Boscaro M, Palu G.
Transcriptionally targeted retroviral vector for combined suicide and immunomodulating
gene therapy of thyroid cancer.
J Clin Endocrinol Metab.
2002;
87
5304-5311
MissingFormLabel
- 45
Zhang R, Baunoch D, DeGroot LJ.
Genetic immunotherapy for medullary thyroid carcinoma: destruction of tumors in mice
by in vivo delivery of adenoviral vector transducing the murine interleukin-2 gene.
Thyroid.
1998;
8
1137-1146
MissingFormLabel
- 46
Zhang R, Straus FH, DeGroot LJ.
Effective genetic therapy of established medullary thyroid carcinoma with murine interleukin-2:
dissemination and cytotoxicity studies in a rat tumor model.
Endocrinology.
1999;
140
2152-2158
MissingFormLabel
- 47
Zhang R, DeGroot LJ.
Genetic immunotherapy of established tumours with adenoviral vectors transducing murine
interleukin-12 (mIL12) subunits in a rat medullary thyroid carcinoma model.
Clin Endocrinol.
2000;
52
687-694
MissingFormLabel
- 48
Yamazaki M, Zhang R, Straus FH, Messina M, Robinson BG, Hashizume K, DeGroot LJ.
Effective gene therapy for medullary thyroid carcinoma using recombinant adenovirus
inducing tumor-specific expression of interleukin-12.
Gene Ther.
2002;
9
64-74
MissingFormLabel
- 49
Spitzweg C, Morris JC.
The sodium iodide symporter: its pathophysiological and therapeutic implications.
Clin Endocrinol.
2002;
57
559-574
MissingFormLabel
- 50
Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M, Ginter CS, Carrasco N.
The sodium/Iodide symporter (NIS): Characterization, regulation, and medical significance.
Endocrine Rev.
2003;
24
48-77
MissingFormLabel
- 51
Dai G, Levy O, Carrasco N.
Cloning and characterization of the thyroid iodide transporter.
Nature.
1996;
379
458-460
MissingFormLabel
- 52
Smanik PA, Liu Q, Furminger TL, Ryu K, Xing S, Mazzaferri EL, Jhiang SM.
Cloning of the human sodium iodide symporter.
Biochem Biophys Res Commun.
1996;
226
339-345
MissingFormLabel
- 53
Spitzweg C, O’Connor MK, Bergert ER, Tindall DJ, Young CYF, Morris JC.
Treatment of prostate cancer by radioiodine therapy after tissue-specific expression
of the sodium iodide symporter.
Cancer Res.
2000;
60
6526-6530
MissingFormLabel
- 54
Spitzweg C, Zhang S, Bergert ER, Castro MR, McIver BD, Heufelder AE, Tindall DJ, Young CYF, Morris JC.
Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium
iodide symporter in prostate cancer cell lines.
Cancer Res.
1999;
59
2136-2141
MissingFormLabel
- 55
Spitzweg C, Dietz AB, O’Connor MK, Bergert ER, Tindall DJ, Young CYF, Morris JC.
In vivo sodium iodide symporter gene therapy of prostate cancer.
Gene Ther.
2001;
8
1524-1531
MissingFormLabel
- 56
Kakinuma H, Bergert ER, Spitzweg C, Cheville JC, Lieber MM, Morris JC.
Probasin Promoter (ARR2PB)-driven, prostate-specific expression of h-NIS for targeted
radioiodine therapy of prostate cancer.
Cancer Res.
2003;
63
7840-7844
MissingFormLabel
- 57
Spitzweg C, Scholz IV, Bergert ER, Tindall DJ, Young CYF, Göke B, Morris JC.
Retinoic acid-induced stimulation of sodium iodide symporter (NIS) expression and
cytotoxicity of radioiodine in prostate cancer cells.
Endocrinology.
2003;
144
3423-3432
MissingFormLabel
- 58
Scholz IV, Cengic N, Göke B, Morris JC, Spitzweg C.
Dexamethasone enhances the catatonic effect of radioiodine therapy in prostate cancer
cells expressing the sodium iodide symporter (NIS).
J Clin Endocrinol Metab.
2004;
89
1108-1116
MissingFormLabel
- 59
Dwyer RM, Schatz SM, Bergert ER, Myers RM, Harvey ME, Classic KL, Blanco MC, Frisk CS, Marler RJ, Davis BJ, O’Connor MK, Russell SJ, Morris JC.
A preclinical large animal model of adenovirus-mediated expression of the sodium-iodide
symporter for radioiodie imaging and therapy of locally recurrent prostate cancer.
Mol Ther.
2005;
12
835-841
MissingFormLabel
- 60
Spitzweg C, Baker CH, Bergert ER, O’Connor MK, Morris JC.
Image-guided radioiodide therapy of medullary thyroid cancer following carcinoembryonic
antigen (CEA)-promoter-targeted sodium iodide symporter (NIS) gene expression.
Hum Gene Ther.
2007;
18
916-924
MissingFormLabel
- 61
Scholz IV, Cengic N, Baker CH, Harrington KJ, Maletz K, Bergert ER, Vile R, Göke B, Morris JC, Spitzweg C.
Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter
gene transfer.
Gene Ther.
2005;
12
272-280
MissingFormLabel
- 62
Willhauck MJ, Sharif-Samani B, Klutz K, Cengic N, Wolf T, Mohr L, Geissler M, Senekowitsch-Schmidtke R, Göke B, Morris JC, Spitzweg C.
Alpha fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular
carcinoma.
Gene Ther.
2008;
15
214-223
MissingFormLabel
- 63
Spitzweg C.
Der Natrium-Iodid-Symporter (NIS): Bedeutung für die Bildgebung und therapeutische
Optionen. The Sodium Iodide Symporter: Its Implications for Imaging and Therapy.
Nuklearmediziner.
2007;
30
19-30
MissingFormLabel
- 64
Hinkel R, El-Aouni C, Olson T, Horstkotte J, Hannoppel E, Mayer S, Müller S, Willhauck MJ, Spitzweg C, Gildehaus FJ, Münzing W, Bock-Marquette I, DiMaio M, Hatzopoulos AK, Boekstegers P, Kupatt C.
Thymosin beta4 is an essential paracrine factor of embryonic endothelial progenitor
cell mediated cardioprotection.
Circulation.
2008;
117
2232-2240
MissingFormLabel
- 65
Willhauck MJ, Sharif-Samani B, Senekowitsch-Schmidtke R, Wunderlich N, Göke B, Morris JC, Spitzweg C.
Functional sodium iodide symporter expression in breast cancer xenograf in vivo after
systemic treatment with retinoic acid and dexamethasone.
Breast Cancer Res Treat.
2008;
109
263-272
MissingFormLabel
- 66
Miyagawa M, Beyer M, Wagner B, Anton M, Spitzweg C, Gansbacher B, Schwaiger M, Benge FM.
Cardiac reporter gene imaging using the human sodium/iodide symporter gene.
Cardiovasc Res.
2005;
65
195-202
MissingFormLabel
- 67
Goel A, Carlosn SK, Classic KL, Greiner S, Power AT, Bell JC, Russell SJ.
Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV (delta51)-NIS,
an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene.
Blood.
2007;
110
2343-2350
MissingFormLabel
- 68
Blechacz B, Splinter PL, Greiner S, Myers RM, Peng K-W, Federspiel MJ, Russel SJ, LaRusso NF.
Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular
carcinoma.
Hepatology.
2006;
44
1465-1477
MissingFormLabel
- 69
Merron A, Peerlinck I, Martin-Duque P, Burnet J, Quintanilla M, Mather S, Hingorani M, Harrington KJ, Vassaux G.
SPECT/CT imaging of oncolytic adenovirus propagation in tumours in vivo using the
Na/I symporter as a reporter gene.
Gene Ther.
2007;
14
1731-1738
MissingFormLabel
- 70
Groot-Wassink T, Aboagye EO, Wang Y, Lemoine NR, Reader AJ, Vassaux G.
Quantitative imaging of Na/I symporter transgene expression using positron emission
tomography in the living animal.
Mol Ther.
2004;
9
436-442
MissingFormLabel
- 71
Dingli D, Kemp BJ, O’Connor MK, Morris JC, Russell SJ, Lowe VJ.
Combined I-124 Positron Emission Tomography/Computed Tomography Imaging of NIS gene
expression in animal models of stably transfected and intravenously transfected tumors.
Mol Imaging Biol.
2006;
8
16-23
MissingFormLabel
- 72
Shimura H, Haraguchi K, Myazaki A, Endo T, Onaya T.
Iodide uptake and experimental 131I therapy in transplanted undifferentiated thyroid cancer cells expressing the Na+/I− symporter gene.
Endocrinology.
1997;
138
4493-4496
MissingFormLabel
- 73
Smit JW, Schroder-Van der Elst JP, Karperien M, Que I, Stokkel M, van der Heide D, Romijn JA.
Iodide kinetics and experimental (131)I therapy in a xenotransplanted human sodium-iodide
symporter-transfected human follicular thyroid carcinoma cell line.
J Clin Endocrinol Metab.
2002;
87
1247-1253
MissingFormLabel
- 74
Schroeder-van der Elst JP, van der Heide D, Romijn JA, Smit JWA.
Differential effects of natural flavonoids on growth and iodide content in a human
Na/I symporter-transfected follicular thyroid carcinoma cell line.
Eur J Endocrinol.
2004;
150
557-564
MissingFormLabel
- 75
Petrich T, Knapp WH, Pötter E.
Functional activity of human sodium/iodide symporter in tumor cell lines.
Nuklearmedizin.
2003;
42
15-18
MissingFormLabel
- 76
Haberkorn U, Beuter P, Kübler W, Eskerski H, Eisenhut M, Kinscherf R, Zitzmann S, Strauss LG, Dimitrakopoulou-Strauss A, Altmann A.
Iodide kinetics and dosimetry in vivo after transfer of the human sodium iodide symporter
gene in rat thyroid carcinoma cells.
J Nucl Med.
2004;
45
827-833
MissingFormLabel
- 77
Lee WW, Lee B, Kim SJ, Jin J, Moon DH, Lee H.
Kinetics of iodide uptake and efflux in various human thyroid cancer cells by expressing
sodium iodide symporter gene via recombinant adenovirus.
Oncol Rep.
2003;
10
845-849
MissingFormLabel
- 78
Lee YJ, Chung J-K, Shin JH, Kang JH, Jeong JM, Lee DS, Lee MC.
In vitro and in vivo properties of a human anaplastic thyroid carcinoma cell line
transfected with the sodium iodide symporter gene.
Thyroid.
2004;
14
889-895
MissingFormLabel
- 79
Hsieh Y-J, Ke C-C, Liu R-S, Wang F-H, Tang K-T, Chi C-W, Chen F-D, Lee C-H.
Radioiodide imaging and treatment of ARO cancer xenograft in a mouse model after expression
of human sodium iodide symporter.
Anticancer Res.
2007;
27
2515-2522
MissingFormLabel
- 80
Kim KI, Kang JH, Chung J-K, Lee YJ, Jeong JM, Lee DS, Lee MC.
Doxorubicin enhances the expression of transgene under control of the CMV promoter
in anaplastic thyroid carcinoma cells.
J Nucl Med.
2007;
48
1553-1561
MissingFormLabel
- 81
Lin X, Fischer AH, Ryu K-Y, Cho J-Y, Sferra TJ, Kloos RT, Mazzaferri EL, Jhiang SM.
Application of the Cre/loxP system to enhance thyroid-targeted expression of sodium/iodide
symporter.
J Clin Endocrinol Metab.
2004;
89
2344-2350
MissingFormLabel
- 82
Cengic N, Baker CH, Schütz M, Göke B, Morris JC, Spitzweg C.
A novel therapeutic strategy for medullary thyroid cancer based on radioiodine therapy
following tissue-specific sodium iodide symporter gene expression.
J Clin Endocrinol Metab.
2005;
90
4457-4464
MissingFormLabel
- 83
Furuya F, Shimura H, Miyazaki A, Taki K, Ohta K, Haraguchi K, Onaya T, Endo T, Kobayashi T.
Adenovirus-mediated transfer of thyroid transcription factor-1 induces radioiodide
organification and retention in thyroid cancer cells.
Endocrinology.
2004;
145
5397-5405
MissingFormLabel
- 84
Elisei R, Vivaldi A, Ciampi R, Faviana P, Basolo F, Santini F, Traino C, Pacini F, Pinchera A.
Treatment with drugs able to reduce iodine efflux significantly increases the intracellular
retention time in thyroid cancer cells stably transfected with sodium iodide symporter
(NIS) cDNA.
J Clin Endocrinol Metab.
2006;
91
2389-2395
MissingFormLabel
- 85
Dadachova E, Bouzahzah B, Zuckier LS, Pestell RG.
Rhenium-188 as an alternative to iodine-131 for treatment of breast tumors expressing
the sodium/iodide symporter (NIS).
Nucl Med Biol.
2002;
29
13-18
MissingFormLabel
- 86
Carlin S, Akabani G, Zalutsky MR.
In vitro cytotoxicity of 211At-Astatide and 131I-Iodide to glioma tumor cells expressing
the sodium/iodide symporter.
J Nucl Med.
2003;
44
1827-1838
MissingFormLabel
- 87
Willhauck MJ, Sharif-Samani B, Wolf I, Senekowitsch-Schmidtke R, Stark HJ, Meyer GJ, Knapp WH, Göke B, Morris JC, Spitzweg C.
The potential of astatine-211 for NIS-mediated radionuclide in prostate cancer.
Eur J Nucl Med Mol Imaging.
2008;
35
1272-1281
MissingFormLabel
- 88
Willhauck MJ, Sharif Samani B, Gildehaus FJ, Wolf I, Senekowitsch-Schmidtke R, Stark HJ, Göke B, Morris JC, Spitzweg C.
Application of 188Re as an alternative radionuclide for treatment of prostate cancer
after tumor-specific sodium iodide symporter (NIS) gene expression.
J Clin Endocrinol Metab.
2007;
92
4451-4458
MissingFormLabel
- 89
Petrich T, Helmeke H-J, Meyer GJ, Knapp WH, Pötter E.
Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing
the human sodium/iodide symporter.
Eur J Nucl Med Mol Imaging.
2002;
29
842-854
MissingFormLabel
- 90
Petrich T, Quintanilla-Martinez L, Korkmaz Z, Samson E, Helmeke HJ, Meyer GJ, Knapp WH, Pötter E.
Effective cancer therapy with the a-particle emitter [211-At]astatine in a mouse model
of genetically modified sodium/iodide symporter-expressing tumors.
Clin Cancer Res.
2006;
12
1342-1348
MissingFormLabel
Correspondence
C. SpitzwegMD
Klinikum Grosshadern
Medizinische Klinik II
Marchioninistraße 15
81377 München
Germany
Telefon: +49/89/7095 0
Fax: +49/89/7095 88 87
eMail: Christine.Spitzweg@med.uni-muenchen.de