Am J Perinatol 2009; 26(9): 647-657
DOI: 10.1055/s-0029-1220788
© Thieme Medical Publishers

Neonatal Cord Blood Subsets and Cytokine Response to Bacterial Antigens

John Denton Peoples1 , 4 , Sandy Cheung1 , 2 , 4 , Mirjana Nesin1 , 3 , 4 , Hong Lin1 , 2 , 4 , A.M. Francesca Tatad1 , 3 , 4 , Danthanh Hoang1 , 3 , 4 , Jeffrey M. Perlman1 , 3 , 4 , Susanna Cunningham-Rundles1 , 2 , 4
  • 1Department of Pediatrics, Host Defenses Program, New York, New York
  • 2Division of Hematology/Oncology, New York, New York
  • 3Division of Neonatology, New York, New York
  • 4Weill Cornell College, New York, New York
Further Information

Publication History

Publication Date:
23 April 2009 (online)

ABSTRACT

We compared lymphocyte subsets and cytokine responses to bacteria among term, preterm infants, and adults. Lymphocyte subset percentages in cord blood (22 preterm, 27 term neonates) and peripheral blood from 21 adults and cytokine/chemokine interleukin (IL)-6, IL-8, IL-10, IL-12, interferon gamma (IFN gamma) responses to Escherichia coli, group B Streptococcus (GBS), Staphylococcus epidermidis, and Lactobacillus plantarum (Lp299v) were assessed by flow cytometry. Preterm compared with term infants had increased CD8+ T cells (p = 0.02) and reduced naïve CD4+ T cells (p < 0.0001). Memory T and natural killer (NK) T cells were reduced (p < 0.001) in neonates; NK and CD56+161+ NK cells were increased (p < 0.001). CD56+CD8+ NK cells were higher in preterm compared with term infants. Despite individual exceptions, cytokine responses in neonates were weaker than adults except for IL-8 response to E. coli in preterm and IL-12 response to Lp299v in term infants. IL-10 responses were weaker in preterm (p = 0.01) and term (p = 0.005) infants to S. epidermidis and to E. coli (p = 0.03 for both) compared with adults. Differences in regulatory subpopulations of NK and T cells between neonates and adults and term compared with preterm infants were observed. These differences rather than intrinsic functional deficiency may account for neonatal cytokine responses to bacteria.

REFERENCES

  • 1 Wilson C B. Immunologic basis for increased susceptibility of the neonate to infection.  J Pediatr. 1986;  108 1-12
  • 2 Nesin M, Cunningham-Rundles S. Cytokines and neonates.  Am J Perinatol. 2000;  17 393-404
  • 3 Clapp D W. Developmental regulation of the immune system.  Semin Perinatol. 2006;  30 69-72
  • 4 Clapp D W, Kliegman R M, Baley J E et al.. Use of intravenously administered immune globulin to prevent nosocomial sepsis in low birth weight infants: report of a pilot study.  J Pediatr. 1989;  115 973-978
  • 5 Read J S, Clemens J D, Klebanoff M A. Moderate low birth weight and infectious disease mortality during infancy and childhood.  Am J Epidemiol. 1994;  140 721-733
  • 6 Wang M L, Dorer D J, Fleming M P, Catlin E A. Clinical outcomes of near-term infants.  Pediatrics. 2004;  114 372-376
  • 7 Protonotariou E, Malamitsi-Puchner A, Rizos D et al.. Age-related differentiations of Th1/Th2 cytokines in newborn infants.  Mediators Inflamm. 2004;  13 89-92
  • 8 Kotiranta-Ainamo A, Rautonen J, Rautonen N. Imbalanced cytokine secretion in newborns.  Biol Neonate. 2004;  85 55-60
  • 9 Delespesse G, Yang L P, Ohshima Y et al.. Maturation of human neonatal CD4+ and CD8+ T lymphocytes into Th1/Th2 effectors.  Vaccine. 1998;  16 1415-1419
  • 10 Malhotra I, Mungai P, Muchiri E et al.. Distinct Th1- and Th2-Type prenatal cytokine responses to Plasmodium falciparum erythrocyte invasion ligands.  Infect Immun. 2005;  73 3462-3470
  • 11 Rabian-Herzog C, Lesage S, Gluckman E. Characterization of lymphocyte subpopulations in cord blood.  Bone Marrow Transplant. 1992;  9(Suppl 1) 64-67
  • 12 Nimgaonkar M T, Roscoe R A, Persichetti J, Rybka W B, Winkelstein A, Ball E D. A unique population of CD34+ cells in cord blood.  Stem Cells. 1995;  13 158-166
  • 13 Beck R, Lam-Po-Tang P R. Comparison of cord blood and adult blood lymphocyte normal ranges: a possible explanation for decreased severity of graft versus host disease after cord blood transplantation.  Immunol Cell Biol. 1994;  72 440-444
  • 14 Kloosterboer F M, van Luxemburg-Heijs S A, Willemze R, Falkenburg J H. Similar potential to become activated and proliferate but differential kinetics and profiles of cytokine production of umbilical cord blood T cells and adult blood naive and memory T cells.  Hum Immunol. 2006;  67 874-883
  • 15 Chen L, Cohen A C, Lewis D B. Impaired allogeneic activation and T-helper 1 differentiation of human cord blood naive CD4 T cells.  Biol Blood Marrow Transplant. 2006;  12 160-171
  • 16 D'Arena G, Musto P, Cascavilla N et al.. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features.  Haematologica. 1998;  83 197-203
  • 17 Keever C A. Characterization of cord blood lymphocyte subpopulations.  J Hematother. 1993;  2 203-206
  • 18 Racadot E, Schaal J P, Van Lemmens P, Billot M, Herve P. Immunological characteristics of umbilical cord blood cells: phenotypic and functional analysis.  J Hematother. 1993;  2 251-253
  • 19 Gasparoni A, Ciardelli L, Avanzini A et al.. Age-related changes in intracellular TH1/TH2 cytokine production, immunoproliferative T lymphocyte response and natural killer cell activity in newborns, children and adults.  Biol Neonate. 2003;  84 297-303
  • 20 Tatad A M, Nesin M, Peoples J D et al.. Cytokine expression in response to bacterial antigens in preterm and term infant cord blood monocytes.  Neonatology. 2008;  94 8-15
  • 21 Mohamed M A, Cunningham-Rundles S, Dean C R, Hammad T A, Nesin M. Levels of pro-inflammatory cytokines produced from cord blood in-vitro are pathogen dependent and increased in comparison to adult controls.  Cytokine. 2007;  39 171-177
  • 22 Lanier L L, Chang C, Phillips J H. Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes.  J Immunol. 1994;  153 2417-2428
  • 23 Davodeau F, Peyrat M A, Necker A et al.. Close phenotypic and functional similarities between human and murine alphabeta T cells expressing invariant TCR alpha-chains.  J Immunol. 1997;  158 5603-5611
  • 24 Motley D, Meyer M P, King R A, Naus G J. Determination of lymphocyte immunophenotypic values for normal full-term cord blood.  Am J Clin Pathol. 1996;  105 38-43
  • 25 Juretic E, Uzarevic B, Petrovecki M, Juretic A. Two-color flow cytometric analysis of preterm and term newborn lymphocytes.  Immunobiology. 2000;  202 421-428
  • 26 Bussel J B, Cunningham-Rundles S, LaGamma E F, Shellabarger M. Analysis of lymphocyte proliferative response subpopulations in very low birth weight infants and during the first 8 weeks of life.  Pediatr Res. 1988;  23 457-462
  • 27 Szabolcs P, Park K D, Reese M, Marti L, Broadwater G, Kurtzberg J. Coexistent naïve phenotype and higher cycling rate of cord blood T cells as compared to adult peripheral blood.  Exp Hematol. 2003;  31 708-714
  • 28 Fukuhara K, Okumura M, Shiono H et al.. A study on CD45 isoform expression during T-cell development and selection events in the human thymus.  Hum Immunol. 2002;  63 394-404
  • 29 Vanhecke D, Leclercq G, Plum J, Vandekerckhove B. Characterization of distinct stages during the differentiation of human CD69+ CD3+ thymocytes and identification of thymic emigrants.  J Immunol. 1995;  155 1862-1872
  • 30 Merkenschlager M, Terry L, Edwards R, Beverley P C. Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: implications for differential CD45 expression in T cell memory formation.  Eur J Immunol. 1988;  18 1653-1661
  • 31 Canto E, Rodriguez-Sanchez J L, Vidal S. Distinctive response of naive lymphocytes from cord blood to primary activation via TCR.  J Leukoc Biol. 2003;  74 998-1007
  • 32 Thornton C A, Upham J W, Wikstrom M E et al.. Functional maturation of CD4+ CD25+ CTLA4+ CD45RA + T regulatory cells in human neonatal T cell responses to environmental antigens/allergens.  J Immunol. 2004;  173 3084-3092
  • 33 Seddiki N, Santner-Nanan B, Tangye S G et al.. Persistence of naive CD45RA + regulatory T cells in adult life.  Blood. 2006;  107 2830-2838
  • 34 Takahata Y, Nomura A, Takada H et al.. CD25+ CD4+ T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene.  Exp Hematol. 2004;  32 622-629
  • 35 Rabian-Herzog C, Lesage S, Gluckman E, Charron D. Characterization of lymphocyte subpopulations in cord blood. 
  • 36 Grzywacz B, Kataria N, Sikora M et al.. Coordinated acquisition of inhibitory and activating receptors and functional properties by developing human natural killer cells.  Blood. 2006;  108 3824-3833
  • 37 Ishihara S, Nieda M, Kitayama J et al.. CD8(+)NKR-P1A (+)T cells preferentially accumulate in human liver.  Eur J Immunol. 1999;  29 2406-2413
  • 38 Iiai T, Watanabe H, Suda T, Okamoto H, Abo T, Hatakeyama K. CD161+ T (NT) cells exist predominantly in human intestinal epithelium as well as in liver.  Clin Exp Immunol. 2002;  129 92-98
  • 39 Takahashi T, Dejbakhsh-Jones S, Strober S. Expression of CD161 (NKR-P1A) defines subsets of human CD4 and CD8 T cells with different functional activities.  J Immunol. 2006;  176 211-216
  • 40 Aldemir H, Prod'homme V, Dumaurier M J et al.. Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor.  J Immunol. 2005;  175 7791-7795
  • 41 Cosmi L, De Palma R, Santarlasci V et al.. Human interleukin 17-producing cells originate from a CD161+ CD4+ T cell precursor.  J Exp Med. 2008;  205 1903-1916
  • 42 Ballabh P, Simm M, Kumari J et al.. Lymphocyte subpopulations in bronchopulmonary dysplasia.  Am J Perinatol. 2003;  20 465-475
  • 43 Krampera M, Tavecchia L, Benedetti F, Nadali G, Pizzolo G. Intracellular cytokine profile of cord blood T-, and NK-cells and monocytes.  Haematologica. 2000;  85 675-679
  • 44 Karlsson H, Larsson P, Wold A E, Rudin A. Pattern of cytokine responses to grampositive and gram-negative commensal bacteria is profoundly changed when monocytes differentiate into dendritic cells.  Infect Immun. 2004;  72 2671-2678
  • 45 Karlsson H, Hessle C, Rudin A. Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora.  Infect Immun. 2002;  70 6688-6696
  • 46 Chalmers I M, Janossy G, Contreras M, Navarrete C. Intracellular cytokine profile of cord and adult blood lymphocytes.  Blood. 1998;  92 11-18
  • 47 Muller K, Zak M, Nielsen S, Pedersen F K, de Nully P, Bendtzen K. In vitro cytokine production and phenotype expression by blood mononuclear cells from umbilical cords, children and adults.  Pediatr Allergy Immunol. 1996;  7 117-124
  • 48 Shalak L F, Perlman J M. Infection markers and early signs of neonatal encephalopathy in the term infant.  Ment Retard Dev Disabil Res Rev. 2002;  8 14-19
  • 49 Rowe J, Heaton T, Kusel M et al.. High IFN-gamma production by CD8+ T cells and early sensitization among infants at high risk of atopy.  J Allergy Clin Immunol. 2004;  113 710-716
  • 50 Kotiranta-Ainamo A, Rautonen J, Rautonen N. Interleukin-10 production by cord blood mononuclear cells.  Pediatr Res. 1997;  41 110-113
  • 51 Hebra A, Strange P, Egbert J M, Ali M, Mullinax A, Buchanan E. Intracellular cytokine production by fetal and adult monocytes.  J Pediatr Surg. 2001;  36 1321-1326

Susanna Cunningham-RundlesPh.D. 

Professor of Immunology, Department of Pediatrics, Cornell University Weill Medical College

1300 York Avenue, New York, NY 10021

Email: scrundle@med.cornell.edu