ABSTRACT
Microparticles (MPs) are small (diameter <1 μm) fragments that seem likely to represent some form of physiology and/or pathophysiology of the originating cell, be it endothelial, platelet, or leukocyte. Increased numbers of MPs are found in various disease states, including cardiovascular disease, and a considerable weight of literature suggests a value in dissecting the various aspects of cell biology. A role in coagulation has been proposed because there is evidence that some MPs expose tissue factor. This article reviews the definitions, mechanisms of production, and links with pathophysiology of MPs in arterial disease, and thus whether or not they can contribute to improved patient care.
KEYWORDS
Microparticles - endothelial cells - platelets - leukocytes - flow cytometry
REFERENCES
1
Davì G, Patrono C.
Platelet activation and atherothrombosis.
N Engl J Med.
2007;
357(24)
2482-2494
2
Blann A D, Lip G Y.
Virchow’s triad revisited: the importance of soluble coagulation factors, the endothelium, and platelets.
Thromb Res.
2001;
101(4)
321-327
3
Libby P.
Inflammation in atherosclerosis.
Nature.
2002;
420(6917)
868-874
4
Abrams C S, Ellison N, Budzynski A Z, Shattil S J.
Direct detection of activated platelets and platelet-derived microparticles in humans.
Blood.
1990;
75(1)
128-138
5
Scharf R E, Tomer A, Marzec U M, Teirstein P S, Ruggeri Z M, Harker L A.
Activation of platelets in blood perfusing angioplasty-damaged coronary arteries. Flow cytometric detection.
Arterioscler Thromb.
1992;
12(12)
1475-1487
6
Dachary-Prigent J, Freyssinet J M, Pasquet J M, Carron J C, Nurden A T.
Annexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: a flow cytometry study showing a role for free sulfhydryl groups.
Blood.
1993;
81(10)
2554-2565
7
Satta N, Toti F, Feugeas O et al..
Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide.
J Immunol.
1994;
153(7)
3245-3255
8
Mallat Z, Hugel B, Ohan J, Lesèche G, Freyssinet J M, Tedgui A.
Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity.
Circulation.
1999;
99(3)
348-353
9
Combes V, Simon A C, Grau G E et al..
In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant.
J Clin Invest.
1999;
104(1)
93-102
10 ISTH Scientific Subcommittee Minutes .Papers presented at: 54th Annual Scientific and Standardization Committee Meeting; July 2–5, 2008; Vienna, Austria; and 55th Annual Scientific and Standardization Committee Meeting July 6–11, 2009 Boston, MA; Available at: http://www.med.unc.edu/isth/ssc/04sscminutes/04wg_vascular_biology.html
11
Perez-Pujol S, Marker P H, Key N S.
Platelet microparticles are heterogeneous and highly dependent on the activation mechanism: studies using a new digital flow cytometer.
Cytometry A.
2007;
71(1)
38-45
12
Lin Y H, Lee G B.
Optically induced flow cytometry for continuous microparticle counting and sorting.
Biosens Bioelectron.
2008;
24(4)
572-578
13
Macey M, Azam U, McCarthy D et al..
Evaluation of the anticoagulants EDTA and citrate, theophylline, adenosine, and dipyridamole (CTAD) for assessing platelet activation on the ADVIA 120 hematology system.
Clin Chem.
2002;
48(6 Pt 1)
891-899
14
Jy W, Horstman L L, Jimenez J J et al..
Measuring circulating cell-derived microparticles.
J Thromb Haemost.
2004;
2
1842-1851
15
Shah M D, Bergeron A L, Dong J F, López J A.
Flow cytometric measurement of microparticles: pitfalls and protocol modifications.
Platelets.
2008;
19(5)
365-372
16
Jimenez J J, Jy W, Mauro L M, Soderland C, Horstman L L, Ahn Y S.
Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis.
Thromb Res.
2003;
109(4)
175-180
17
Banfi C, Brioschi M, Wait R et al..
Proteome of endothelial cell-derived procoagulant microparticles.
Proteomics.
2005;
5(17)
4443-4455
18
Koga H, Sugiyama S, Kugiyama K et al..
Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease.
J Am Coll Cardiol.
2005;
45(10)
1622-1630
19
Abid Hussein M N, Böing A N, Biró E et al..
Phospholipid composition of in vitro endothelial microparticles and their in vivo thrombogenic properties.
Thromb Res.
2008;
121(6)
865-871
20
Flaumenhaft R, Dilks J R, Richardson J et al..
Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles.
Blood.
2009;
113(5)
1112-1121
21
George J N, Pickett E B, Saucerman S et al..
Platelet surface glycoproteins. Studies on resting and activated platelets and platelet membrane microparticles in normal subjects, and observations in patients during adult respiratory distress syndrome and cardiac surgery.
J Clin Invest.
1986;
78(2)
340-348
22
Garcia B A, Smalley D M, Cho H, Shabanowitz J, Ley K, Hunt D F.
The platelet microparticle proteome.
J Proteome Res.
2005;
4(5)
1516-1521
23
Biró E, Akkerman J W, Hoek F J et al..
The phospholipid composition and cholesterol content of platelet-derived microparticles: a comparison with platelet membrane fractions.
J Thromb Haemost.
2005;
3(12)
2754-2763
24
Morel O, Toti F, Hugel B et al..
Procoagulant microparticles: disrupting the vascular homeostasis equation?.
Arterioscler Thromb Vasc Biol.
2006;
26(12)
2594-2604
25
Barry O P, Praticò D, Savani R C, FitzGerald G A.
Modulation of monocyte-endothelial cell interactions by platelet microparticles.
J Clin Invest.
1998;
102(1)
136-144
26
Gambim M H, do Carmo AdeO, Marti L, Veríssimo-Filho S, Lopes L R, Janiszewski M.
Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: experimental evidence for a novel mechanism of septic vascular dysfunction.
Crit Care.
2007;
11(5)
R107
27
Jy W, Mao W W, Horstman L, Tao J, Ahn Y S.
Platelet microparticles bind, activate and aggregate neutrophils in vitro.
Blood Cells Mol Dis.
1995;
21(3)
217-231, discussion 231a
28
Gasser O, Hess C, Miot S, Deon C, Sanchez J C, Schifferli J A.
Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils.
Exp Cell Res.
2003;
285(2)
243-257
29
Mesri M, Altieri D C.
Endothelial cell activation by leukocyte microparticles.
J Immunol.
1998;
161(8)
4382-4387
30
Pluskota E, Woody N M, Szpak D et al..
Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles.
Blood.
2008;
112(6)
2327-2335
31
Scanu A, Molnarfi N, Brandt K J, Gruaz L, Dayer J M, Burger D.
Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins.
J Leukoc Biol.
2008;
83(4)
921-927
32
Berckmans R J, Neiuwland R, Böing A N, Romijn F P, Hack C E, Sturk A.
Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation.
Thromb Haemost.
2001;
85(4)
639-646
33
Ueba T, Haze T, Sugiyama M et al..
Level, distribution and correlates of platelet-derived microparticles in healthy individuals with special reference to the metabolic syndrome.
Thromb Haemost.
2008;
100(2)
280-285
34
Wang J M, Huang Y J, Wang Y et al..
Increased circulating CD31+/CD42-microparticles are associated with impaired systemic artery elasticity in healthy subjects.
Am J Hypertens.
2007;
20(9)
957-964
35
van der Zee P M, Biró E, Ko Y et al..
P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction.
Clin Chem.
2006;
52(4)
657-664
36
Michelson A D, Rajasekhar D, Bednarek F J, Barnard M R.
Platelet and platelet-derived microparticle surface factor V/Va binding in whole blood: differences between neonates and adults.
Thromb Haemost.
2000;
84(4)
689-694
37
Nomura S, Miyazaki Y, Miyake T et al..
Detection of platelet-derived microparticles in patients with diabetes.
Am J Hematol.
1993;
44(3)
213
38
Nomura S, Suzuki M, Katsura K et al..
Platelet-derived microparticles may influence the development of atherosclerosis in diabetes mellitus.
Atherosclerosis.
1995;
116(2)
235-240
39
Tan K T, Tayebjee M H, Lim H S, Lip G Y.
Clinically apparent atherosclerotic disease in diabetes is associated with an increase in platelet microparticle levels.
Diabet Med.
2005;
22(12)
1657-1662
40
Ogata N, Imaizumi M, Nomura S et al..
Increased levels of platelet-derived microparticles in patients with diabetic retinopathy.
Diabetes Res Clin Pract.
2005;
68(3)
193-201
41
Koga H, Sugiyama S, Kugiyama K et al..
Elevated levels of remnant lipoproteins are associated with plasma platelet microparticles in patients with type-2 diabetes mellitus without obstructive coronary artery disease.
Eur Heart J.
2006;
27(7)
817-823
42
Bernard S, Loffroy R, Sérusclat A et al..
Increased levels of endothelial microparticles CD144 (VE-Cadherin) positives in type 2 diabetic patients with coronary noncalcified plaques evaluated by multidetector computed tomography (MDCT).
Atherosclerosis.
2009;
203(2)
429-435
43
Ogata N, Nomura S, Shouzu A, Imaizumi M, Arichi M, Matsumura M.
Elevation of monocyte-derived microparticles in patients with diabetic retinopathy.
Diabetes Res Clin Pract.
2006;
73(3)
241-248
44
Sabatier F, Darmon P, Hugel B et al..
Type 1 and type 2 diabetic patients display different patterns of cellular microparticles.
Diabetes.
2002;
51(9)
2840-2845
45
Preston R A, Jy W, Jimenez J J et al..
Effects of severe hypertension on endothelial and platelet microparticles.
Hypertension.
2003;
41(2)
211-217
46
Wang J M, Su C, Wang Y et al..
Elevated circulating endothelial microparticles and brachial-ankle pulse wave velocity in well-controlled hypertensive patients.
J Hum Hypertens.
2009;
23(5)
307-315
47
Bakouboula B, Morel O, Faure A et al..
Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension.
Am J Respir Crit Care Med.
2008;
177(5)
536-543
48
Amabile N, Heiss C, Real W M et al..
Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension.
Am J Respir Crit Care Med.
2008;
177(11)
1268-1275
49
Casey R G, Joyce M, Roche-Nagle G, Cox D, Bouchier-Hayes D J.
Young male smokers have altered platelets and endothelium that precedes atherosclerosis.
J Surg Res.
2004;
116(2)
227-233
50
Goichot B, Grunebaum L, Desprez D et al..
Circulating procoagulant microparticles in obesity.
Diabetes Metab.
2006;
32(1)
82-85
51
Esposito K, Ciotola M, Schisano B et al..
Endothelial microparticles correlate with endothelial dysfunction in obese women.
J Clin Endocrinol Metab.
2006;
91(9)
3676-3679
52
Bulut D, Maier K, Bulut-Streich N, Börgel J, Hanefeld C, Mügge A.
Circulating endothelial microparticles correlate inversely with endothelial function in patients with ischemic left ventricular dysfunction.
J Card Fail.
2008;
14(4)
336-340
53
Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G.
Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease.
Arterioscler Thromb Vasc Biol.
2006;
26(1)
112-116
54
Héloire F, Weill B, Weber S, Batteux F.
Aggregates of endothelial microparticles and platelets circulate in peripheral blood. Variations during stable coronary disease and acute myocardial infarction.
Thromb Res.
2003;
110(4)
173-180
55
Leroyer A S, Rautou P E, Silvestre J S et al..
CD40 ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization.
J Am Coll Cardiol.
2008;
52(16)
1302-1311
56
Canault M, Leroyer A S, Peiretti F et al..
Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1.
Am J Pathol.
2007;
171(5)
1713-1723
57
Craft J A, Marsh N A.
Increased generation of platelet-derived microparticles following percutaneous transluminal coronary angioplasty.
Blood Coagul Fibrinolysis.
2003;
14(8)
719-728
58
Bernal-Mizrachi L, Jy W, Jimenez J J et al..
High levels of circulating endothelial microparticles in patients with acute coronary syndromes.
Am Heart J.
2003;
145(6)
962-970
59
Zielińska M, Koniarek W, Goch J H et al..
Circulating endothelial microparticles in patients with acute myocardial infarction.
Kardiol Pol.
2005;
62(6)
531-542, discussion 543–544
60
Katopodis J N, Kolodny L, Jy W et al..
Platelet microparticles and calcium homeostasis in acute coronary ischemias.
Am J Hematol.
1997;
54(2)
95-101
61
Bernal-Mizrachi L, Jy W, Fierro C et al..
Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes.
Int J Cardiol.
2004;
97(3)
439-446
62
Huisse M G, Lanoy E, Tcheche D et al..
Prothrombotic markers and early spontaneous recanalization in ST-segment elevation myocardial infarction.
Thromb Haemost.
2007;
98(2)
420-426
63
Matsumoto N, Nomura S, Kamihata H, Kimura Y, Iwasaka T.
Association of platelet-derived microparticles with C-C chemokines on vascular complication in patients with acute myocardial infarction.
Clin Appl Thromb Hemost.
2002;
8(3)
279-286
64
Singh N, Gemmell C H, Daly P A, Yeo E L.
Elevated platelet-derived microparticle levels during unstable angina.
Can J Cardiol.
1995;
11(11)
1015-1021
65
Michelsen A E, Brodin E, Brosstad F, Hansen J B.
Increased level of platelet microparticles in survivors of myocardial infarction.
Scand J Clin Lab Invest.
2008;
68(5)
386-392
66
Gawaz M, Neumann F J, Ott I, Schiessler A, Schömig A.
Platelet function in acute myocardial infarction treated with direct angioplasty.
Circulation.
1996;
93(2)
229-237
67
Simak J, Gelderman M P, Yu H, Wright V, Baird A E.
Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome.
J Thromb Haemost.
2006;
4(6)
1296-1302
68
Williams J B, Jauch E C, Lindsell C J, Campos B.
Endothelial microparticle levels are similar in acute ischemic stroke and stroke mimics due to activation and not apoptosis/necrosis.
Acad Emerg Med.
2007;
14(8)
685-690
69
Lee Y J, Jy W, Horstman L L et al..
Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias.
Thromb Res.
1993;
72(4)
295-304
70
Geiser T, Sturzenegger M, Genewein U, Haeberli A, Beer J H.
Mechanisms of cerebrovascular events as assessed by procoagulant activity, cerebral microemboli, and platelet microparticles in patients with prosthetic heart valves.
Stroke.
1998;
29(9)
1770-1777
71
Zeiger F, Stephan S, Hoheisel G, Pfeiffer D, Ruehlmann C, Koksch M.
P-Selectin expression, platelet aggregates, and platelet-derived microparticle formation are increased in peripheral arterial disease.
Blood Coagul Fibrinolysis.
2000;
11(8)
723-728
72
Nomura S, Imamura A, Okuno M et al..
Platelet-derived microparticles in patients with arteriosclerosis obliterans: enhancement of high shear-induced microparticle generation by cytokines.
Thromb Res.
2000;
98(4)
257-268
73
Lechner D, Weltermann A.
Circulating tissue factor-exposing microparticles.
Thromb Res.
2008;
122(suppl 1)
S47-S54
74
Tans G, Rosing J, Thomassen M C, Heeb M J, Zwaal R F, Griffin J H.
Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles.
Blood.
1991;
77(12)
2641-2648
75
Sinauridze E I, Kireev D A, Popenko N Y et al..
Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets.
Thromb Haemost.
2007;
97(3)
425-434
76
Ilveskero S, Siljander P, Lassila R.
Procoagulant activity on platelets adhered to collagen or plasma clot.
Arterioscler Thromb Vasc Biol.
2001;
21(4)
628-635
77
Siljander P, Carpen O, Lassila R.
Platelet-derived microparticles associate with fibrin during thrombosis.
Blood.
1996;
87(11)
4651-4663
78
Hoffman M, Monroe D M, Roberts H R.
Coagulation factor IXa binding to activated platelets and platelet-derived microparticles: a flow cytometric study.
Thromb Haemost.
1992;
68(1)
74-78
79
Falati S, Liu Q, Gross P et al..
Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin.
J Exp Med.
2003;
197(11)
1585-1598
80
Poitevin S, Cochery-Nouvellon E, Dupont A, Nguyen P.
Monocyte IL-10 produced in response to lipopolysaccharide modulates thrombin generation by inhibiting tissue factor expression and release of active tissue factor-bound microparticles.
Thromb Haemost.
2007;
97(4)
598-607
81
Rauch U, Bonderman D, Bohrmann B et al..
Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor.
Blood.
2000;
96(1)
170-175
82
Kushak R I, Nestoridi E, Lambert J, Selig M K, Ingelfinger J R, Grabowski E F.
Detached endothelial cells and microparticles as sources of tissue factor activity.
Thromb Res.
2005;
116(5)
409-419
83
Jy W, Jimenez J J, Mauro L M et al..
Endothelial microparticles induce formation of platelet aggregates via a von Willebrand factor/ristocetin dependent pathway, rendering them resistant to dissociation.
J Thromb Haemost.
2005;
3(6)
1301-1308
84
Brodsky S V, Malinowski K, Golightly M, Jesty J, Goligorsky M S.
Plasminogen activator inhibitor-1 promotes formation of endothelial microparticles with procoagulant potential.
Circulation.
2002;
106(18)
2372-2378
85
Leroyer A S, Isobe H, Lesèche G et al..
Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques.
J Am Coll Cardiol.
2007;
49(7)
772-777
86
Chironi G, Simon A, Hugel B et al..
Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects.
Arterioscler Thromb Vasc Biol.
2006;
26(12)
2775-2780
87
Namba M, Tanaka A, Shimada K et al..
Circulating platelet-derived microparticles are associated with atherothrombotic events: a marker for vulnerable blood.
Arterioscler Thromb Vasc Biol.
2007;
27(1)
255-256
88
Del Turco S, Basta G, Lazzerini G et al..
Effect of the administration of n-3 polyunsaturated fatty acids on circulating levels of microparticles in patients with a previous myocardial infarction.
Haematologica.
2008;
93(6)
892-899
89
Matzdorff A C, Kühnel G, Kemkes-Matthes B, Pralle H, Voss R, Fareed J.
Effect of glycoprotein IIb/IIIa inhibitors on CD62p expression, platelet aggregates, and microparticles in vitro.
J Lab Clin Med.
2000;
135(3)
247-255
90
Nomura S, Shouzu A, Omoto S, Nishikawa M, Fukuhara S, Iwasaka T.
Effect of valsartan on monocyte/endothelial cell activation markers and adiponectin in hypertensive patients with type 2 diabetes mellitus.
Thromb Res.
2006;
117(4)
385-392
91
Serebruany V L, Malinin A I, Jerome S D et al..
Effects of clopidogrel and aspirin combination versus aspirin alone on platelet aggregation and major receptor expression in patients with heart failure: the Plavix Use for Treatment Of Congestive Heart Failure (PLUTO-CHF) trial.
Am Heart J.
2003;
146
713-720
92
Nomura S, Takahashi N, Inami N et al..
Probucol and ticlopidine: effect on platelet and monocyte activation markers in hyperlipidemic patients with and without type 2 diabetes.
Atherosclerosis.
2004;
174(2)
329-335
93
Diamant M, Tushuizen M E, Abid-Hussein M N et al..
Simvastatin-induced endothelial cell detachment and microparticle release are prenylation dependent.
Thromb Haemost.
2008;
100(3)
489-497
94
Esposito K, Ciotola M, Giugliano D.
Pioglitazone reduces endothelial microparticles in the metabolic syndrome.
Arterioscler Thromb Vasc Biol.
2006;
26(8)
1926
95
Pirro M, Schillaci G, Bagaglia F et al..
Microparticles derived from endothelial progenitor cells in patients at different cardiovascular risk.
Atherosclerosis.
2008;
197(2)
757-767
96
Pirro M, Schillaci G, Paltriccia R et al..
Increased ratio of CD31 + /CD42- microparticles to endothelial progenitors as a novel marker of atherosclerosis in hypercholesterolemia.
Arterioscler Thromb Vasc Biol.
2006;
26(11)
2530-2535
97
Lacroix R, Sabatier F, Mialhe A et al..
Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro.
Blood.
2007;
110(7)
2432-2439
98
George F D.
Microparticles in vascular diseases.
Thromb Res.
2008;
122(Suppl 1)
S55-S59
99
Robert S, Poncelet P, Lacroix R et al..
Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies?.
J Thromb Haemost.
2009;
7(1)
190-197
100
Shet A S.
Characterizing blood microparticles: technical aspects and challenges.
Vasc Health Risk Manag.
2008;
4(4)
769-774
Dr. A.D. Blann
Haemostasis, Thrombosis and Vascular Biology Unit, University of Birmingham Centre for Cardiovascular Sciences
City Hospital, Birmingham B18 7QH, UK
eMail: a.blann@bham.ac.uk