Horm Metab Res 2010; 42(1): 1-7
DOI: 10.1055/s-0029-1238322
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Streptozotocin-induced Diabetes and Elevation of Plasma FFA on Ceramide Metabolism in Rat Skeletal Muscle

A. Błachnio-Zabielska1 , P. Zabielski1 , M. Baranowski1 , J. Gorski1
  • 1Department of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-089, Białystok, Poland
Further Information

Publication History

received 25.05.2009

accepted after second revision 18.08.2009

Publication Date:
14 September 2009 (online)

Abstract

Ceramide is likely to mediate in induction of insulin resistance. The aim of the present study was to examine the effect of streptozotocin-diabetes and treatment with heparin on ceramide metabolism in skeletal muscles. The experiments were performed on Wistar rats divided into three groups: 1) control, 2) treated with streptozotocin, and 3) treated with heparin. Assays were carried out on three types of muscle: slow-twitch oxidative (soleus), fast-twitch oxidative-glycolytic, and fast-twitch glycolytic (red and white section of the gastrocnemius, respectively). The activity of serine palmitoyltransferase (SPT), neutral and acid sphingomyelinase (nSMase and aSMase), and neutral and alkaline ceramidase (nCDase and alCDase) was examined. The content of ceramide, sphinganine, sphingosine, and sphingosine-1-phosphate was also measured. Both streptozotocin-diabetes and treatment with heparin increased the activity of SPT in each type of muscle. Heparin inhibits the activity of aSMase and concomitantly induces the activity of nSMase in each studied muscle. Streptozotocin decreased aSMase activity in each muscle and increased nSMase activity in the soleus and red section of the gastrocnemius. Heparin induced, whereas streptozotocin inhibited the activity of n-CDase in the soleus and the red section of the gastrocnemius. Heparin increased the activity of alCDase in the red gastrocnemius. In the soleus and the white gastrocnemius the activity of alCDase decreased. Streptozotocin significantly increased the content of ceramide in each muscle studied and heparin did it only in the soleus. It is concluded that insulin deficiency is accompanied by alterations in ceramide metabolism in skeletal muscles. Increased concentration of the plasma free fatty acids may mediate certain effects of insulin deficiency.

References

  • 1 Boden G, Carnell LH. Nutritional effects of fat on carbohydrate metabolism.  Best Pract Res Clin Endocrinol Metab. 2003;  17 399-410
  • 2 Boden G. Interaction between free fatty acids and glucose metabolism.  Curr Opin Clin Nutr Metab Care. 2002;  5 545-549
  • 3 Boden G. Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes.  Exp Clin Endocrinol Diabetes. 2003;  111 121-124
  • 4 Boden G. Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver.  Curr Diab Rep. 2006;  6 177-181
  • 5 Hirabara SM, Silveira LR, Abdulkader F, Carvalho CR, Procopio J, Curi R. Time-dependent effects of fatty acids on skeletal muscle metabolism.  J Cell Physiol. 2007;  210 7-15
  • 6 Reynoso R, Salgado LM, Calderon V. High levels of palmitic acid lead to insulin resistance due to changes in the level of phosphorylation of the insulin receptor and insulin receptor substrate-1.  Mol Cell Biochem. 2003;  246 155-162
  • 7 Stefan N, Wahl HG, Fritsche A, Haring H, Stumvoll M. Effect of the pattern of elevated free fatty acids on insulin sensitivity and insulin secretion in healthy humans.  Horm Metab Res. 2001;  33 432-438
  • 8 Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis.  Oncogene. 2003;  22 5897-5906
  • 9 MacRae VE, Burdon T, Ahmed SF, Farquharson C. Ceramide inhibition of chondrocyte proliferation and bone growth is IGF-I independent.  J Endocrinol. 2006;  191 369-377
  • 10 Oh HL, Seok JY, Kwon CH, Kang SK, Kim YK. Role of MAPK in ceramide-induced cell death in primary cultured astrocytes from mouse embryonic brain.  Neurotoxicology. 2006;  27 31-38
  • 11 Ohanian J, Ohanian V. Sphingolipids in mammalian cell signalling.  Cell Mol Life Sci. 2001;  58 2053-2068
  • 12 Schubert KM, Scheid MP, Duronio V. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473.  J Biol Chem. 2000;  275 13330-13335
  • 13 Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, Kolesnick RN. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis.  Nature. 1996;  380 75-79
  • 14 Wang YM, Seibenhener ML, Vandenplas ML, Wooten MW. Atypical PKC zeta is activated by ceramide, resulting in coactivation of NF-kappaB/JNK kinase and cell survival.  J Neurosci Res. 1999;  55 293-302
  • 15 Merrill AH Jr. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway.  J Biol Chem. 2002;  277 25843-25846
  • 16 Kolesnick R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway.  J Clin Invest. 2002;  110 3-8
  • 17 Dobrzyn A, Gorski J. Ceramides and sphingomyelins in skeletal muscles of the rat: content and composition. Effect of prolonged exercise.  Am J Physiol Endocrinol Metab. 2002;  282 E277-E285
  • 18 Turinsky J, Bayly BP, O’Sullivan DM. 1,2-Diacylglycerol and ceramide levels in rat skeletal muscle and liver in vivo. Studies with insulin, exercise, muscle denervation, and vasopressin.  J Biol Chem. 1990;  265 7933-7938
  • 19 DeFronzo RA, Ferrannini E, Sato Y, Felig P, Wahren J. Synergistic interaction between exercise and insulin on peripheral glucose uptake.  J Clin Invest. 1981;  68 1468-1474
  • 20 Kruszynska YT, Olefsky JM. Cellular and molecular mechanisms of non-insulin dependent diabetes mellitus.  J Investig Med. 1996;  44 413-428
  • 21 Krssak M, Falk Petersen K, Dresner A, DiPietro L, Vogel SM, Rothman DL, Roden M, Shulman GI. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study.  Diabetologia. 1999;  42 113-116
  • 22 Phillips DI, Caddy S, Ilic V, Fielding BA, Frayn KN, Borthwick AC, Taylor R. Intramuscular triglyceride and muscle insulin sensitivity: evidence for a relationship in nondiabetic subjects.  Metabolism. 1996;  45 947-950
  • 23 Turinsky J, O’Sullivan DM, Bayly BP. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo.  J Biol Chem. 1990;  265 16880-16885
  • 24 Adams JM 2nd , Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans.  Diabetes. 2004;  53 25-31
  • 25 Gorski J, Dobrzyn A, Zendzian-Piotrowska M. The sphingomyelin-signaling pathway in skeletal muscles and its role in regulation of glucose uptake.  Ann N Y Acad Sci. 2002;  967 236-248
  • 26 Straczkowski M, Kowalska I, Nikolajuk A, Dzienis-Straczkowska S, Kinalska I, Baranowski M, Zendzian-Piotrowska M, Brzezinska Z, Gorski J. Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle.  Diabetes. 2004;  53 1215-1221
  • 27 Blachnio-Zabielska A, Baranowski M, Zabielski P, Gorski J. Effect of exercise duration on the key pathways of ceramide metabolism in rat skeletal muscles.  J Cell Biochem. 2008;  105 776-784
  • 28 Gorska M, Dobrzyn A, Zendzian-Piotrowska M, Gorski J. Effect of streptozotocin-diabetes on the functioning of the sphingomyelin-signalling pathway in skeletal muscles of the rat.  Horm Metab Res. 2004;  36 14-21
  • 29 Dyck DJ, Peters SJ, Glatz J, Gorski J, Keizer H, Kiens B, Liu S, Richter EA, Spriet LL, van der Vusse GJ, Bonen A. Functional differences in lipid metabolism in resting skeletal muscle of various fiber types.  Am J Physiol. 1997;  272 E340-E351
  • 30 Sullivan TE, Armstrong RB. Rat locomotory muscle fiber activity during trotting and galloping.  J Appl Physiol. 1978;  44 358-363
  • 31 Min JK, Yoo HS, Lee EY, Lee WJ, Lee YM. Simultaneous quantitative analysis of sphingoid base 1-phosphates in biological samples by o-phthalaldehyde precolumn derivatization after dephosphorylation with alkaline phosphatase.  Anal Biochem. 2002;  303 167-175
  • 32 Bose R, Chen P, Loconti A, Grullich C, Abrams JM, Kolesnick RN. Ceramide generation by the Reaper protein is not blocked by the caspase inhibitor, p35.  J Biol Chem. 1998;  273 28852-28859
  • 33 Liu B, Hannun YA. Sphingomyelinase assay using radiolabeled substrate.  Methods Enzymol. 2000;  311 164-167
  • 34 Nikolova-Karakashian M, Merrill AH Jr . Ceramidases.  Methods Enzymol. 2000;  311 194-201
  • 35 Merrill AH Jr . Characterization of serine palmitoyltransferase activity in Chinese hamster ovary cells.  Biochim Biophys Acta. 1983;  754 284-291
  • 36 Carton JM, Uhlinger DJ, Batheja AD, Derian C, Ho G, Argenteri D, D’Andrea MR. Enhanced serine palmitoyltransferase expression in proliferating fibroblasts, transformed cell lines, and human tumors.  J Histochem Cytochem. 2003;  51 715-726
  • 37 Arnold RS, Newton AC. Inhibition of the insulin receptor tyrosine kinase by sphingosine.  Biochemistry. 1991;  30 7747-7754
  • 38 Serlie MJ, Meijer AJ, Groener JE, Duran M, Endert E, Fliers E, Aerts JM, Sauerwein HP. Short-term manipulation of plasma free fatty acids does not change skeletal muscle concentrations of ceramide and glucosylceramide in lean and overweight subjects.  J Clin Endocrinol Metab. 2007;  92 1524-1529
  • 39 Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, Sinclair AJ, Febbraio MA, Watt MJ. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites.  J Appl Physiol. 2006;  100 1467-1474
  • 40 Powell DJ, Turban S, Gray A, Hajduch E, Hundal HS. Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells.  Biochem J. 2004;  382 619-629
  • 41 Schmitz-Peiffer C, Craig DL, Biden TJ. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate.  J Biol Chem. 1999;  274 24202-24210

Correspondence

A. Błachnio-Zabielska

Department of Physiology Medical University of Białystok

Mickiewicza 2c

5-230 Białystok

Poland

Phone: +48/85/748 55 85

Fax: +48/85/748 55 86

Email: blacha@umwb.edu.pl