Semin Respir Crit Care Med 2009; 30(5): 579-586
DOI: 10.1055/s-0029-1238916
© Thieme Medical Publishers

Nutrition in Cystic Fibrosis

Julia L. Matel1 , Carlos E. Milla1
  • 1The Stanford Cystic Fibrosis Center, Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California
Further Information

Publication History

Publication Date:
16 September 2009 (online)

ABSTRACT

Cystic fibrosis (CF) is mostly recognized for its pulmonary morbidity, but the earliest manifestations of the disease are related to its gastrointestinal and nutritional derangements. Destruction of acinar pancreatic tissue, pancreatic ductular obstruction, and lack of enzymatic activity lead to malabsorption (particularly of fats), diarrhea, and failure to thrive. A minority of CF patients carrying milder CF transmembrane conductance regulator (CFTR) mutations have preserved pancreatic secretory activity and are free from significant malabsorption early in life. However, these patients are at risk for losing pancreatic function over time.

Nutritional status plays an important role in the progression of the pulmonary disease in CF. Further, CF patients with better nutritional status have a survival advantage. Several factors contribute to impaired nutritional status in CF (e.g., pancreatic insufficiency, chronic malabsorption, recurrent sinopulmonary infections, chronic inflammation, increased energy expenditure, suboptimal intake). Progressive lung disease further increases calorie requirements by increasing the work of breathing. Treatment programs that place an emphasis on higher caloric intake and more aggressive nutritional management in CF patients report better outcomes. Basic tenets of nutritional repletion in CF include the use of pancreatic enzyme replacement therapy and following a high calorie, high protein, unrestricted diet. At the Stanford Cystic Fibrosis Center, nutritional status is assessed on an ongoing basis through anthropometric parameters and annual assessment of body composition, bone density, glucose tolerance, and various biochemical and micronutrient levels. Based on the anthropometric data obtained on routine clinical encounters, patients are categorized as to their nutritional risk. This proactive approach for the early identification of nutritional risk has become a major theme within the network of US CF centers. Aggressive nutritional support with adequate pancreatic replacement management should lead to both normal growth and lung function preservation. In addition, nutritional status has to be monitored closely during routine encounters to allow for early intervention once derangements are noted. This will include increasing calories in the early stages of lung disease and being vigilant of gastrointestinal symptomatology and complications.

REFERENCES

  • 1 Davies J C, Alton E WFW, Bush A. Cystic fibrosis.  BMJ. 2007;  335 1255-1259
  • 2 Davis P B, Drumm M, Konstan M W. Cystic fibrosis.  Am J Respir Crit Care Med. 1996;  154 1229-1256
  • 3 Durie P R. The pathophysiology of the pancreatic defect in cystic fibrosis.  Acta Paediatr Scand Suppl. 1989;  363 41-44
  • 4 Littlewood J M, Wolfe S P, Conway S P. Diagnosis and treatment of intestinal malabsorption in cystic fibrosis.  Pediatr Pulmonol. 2006;  41 35-49
  • 5 Robinson P J, Smith A L, Sly P D. Duodenal pH in cystic fibrosis and its relationship to fat malabsorption.  Dig Dis Sci. 1990;  35 1299-1304
  • 6 Walkowiak J, Lisowska A, Blaszczysński M. The changing face of the exocrine pancreas in cystic fibrosis: pancreatic sufficiency, pancreatitis and genotype.  Eur J Gastroenterol Hepatol. 2008;  20 157-160
  • 7 Kerem E, Reisman J, Corey M, Canny G J, Levison H. Prediction of mortality in patients with cystic fibrosis.  N Engl J Med. 1992;  326 1187-1191
  • 8 Milla C E, Warwick W J. Risk of death in cystic fibrosis patients with severely compromised lung function.  Chest. 1998;  113 1230-1234
  • 9 Kraemer R, Rüdeberg A, Hadorn B, Rossi E. Relative underweight in cystic fibrosis and its prognostic value.  Acta Paediatr Scand. 1978;  67 33-37
  • 10 Nir M, Lanng S, Johansen H K, Koch C. Long-term survival and nutritional data in patients with cystic fibrosis treated in a Danish centre.  Thorax. 1996;  51 1023-1027
  • 11 Corey M, McLaughlin F J, Williams M, Levison H. A comparison of survival, growth, and pulmonary function in patients with cystic fibrosis in Boston and Toronto.  J Clin Epidemiol. 1988;  41 583-591
  • 12 Lai H C, Corey M, FitzSimmons S, Kosorok M R, Farrell P M. Comparison of growth status of patients with cystic fibrosis between the United States and Canada.  Am J Clin Nutr. 1999;  69 531-538
  • 13 Beker L T, Russek-Cohen E, Fink R J. Stature as a prognostic factor in cystic fibrosis survival.  J Am Diet Assoc. 2001;  101 438-442
  • 14 Corey M, Gaskin K, Durie P, Levison H, Forstner G. Improved prognosis in CF patients with normal fat absorption.  J Pediatr Gastroenterol Nutr. 1984;  3(Suppl 1) S99-S105
  • 15 Milla C. Nutrition and lung disease in cystic fibrosis.  Clin Chest Med. 2007;  28 319-330
  • 16 Wilson D O, Rogers R M, Hoffman R M. Nutrition and chronic lung disease.  Am Rev Respir Dis. 1985;  132 1347-1365
  • 17 Vaisman N, Pencharz P B, Corey M, Canny G J, Hahn E. Energy expenditure of patients with cystic fibrosis.  J Pediatr. 1987;  111 496-500
  • 18 Elborn J S, Cordon S M, Western P J, Macdonald I A, Shale D J. Tumour necrosis factor-alpha, resting energy expenditure and cachexia in cystic fibrosis.  Clin Sci (Lond). 1993;  85 563-568
  • 19 Bell S C, Saunders M J, Elborn J S, Shale D J. Resting energy expenditure and oxygen cost of breathing in patients with cystic fibrosis.  Thorax. 1996;  51 126-131
  • 20 Wilson D C, Pencharz P B. Nutrition and cystic fibrosis.  Nutrition. 1998;  14 792-795
  • 21 Kirchner K K, Wagener J S, Khan T Z, Copenhaver S C, Accurso F J. Increased DNA levels in bronchoalveolar lavage fluid obtained from infants with cystic fibrosis.  Am J Respir Crit Care Med. 1996;  154 1426-1429
  • 22 Armstrong D S, Grimwood K, Carlin J B et al.. Lower airway inflammation in infants and young children with cystic fibrosis.  Am J Respir Crit Care Med. 1997;  156(4 Pt 1) 1197-1204
  • 23 Sly P D, Brennan S, Gangell C et al.. Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening.  Am J Respir Crit Care Med. 2009;  180 146-152
  • 24 Bell S C, Bowerman A M, Nixon L E, Macdonald I A, Elborn J S, Shale D J. Metabolic and inflammatory responses to pulmonary exacerbation in adults with cystic fibrosis.  Eur J Clin Invest. 2000;  30 553-559
  • 25 Dorlöchter L, Røksund O, Helgheim V, Rosendahl K, Fluge G. Resting energy expenditure and lung disease in cystic fibrosis.  J Cyst Fibros. 2002;  1 131-136
  • 26 Girardet J P, Tounian P, Sardet A et al.. Resting energy expenditure in infants with cystic fibrosis.  J Pediatr Gastroenterol Nutr. 1994;  18 214-219
  • 27 Thomson M A, Wilmott R W, Wainwright C, Masters B, Francis P J, Shepherd R W. Resting energy expenditure, pulmonary inflammation, and genotype in the early course of cystic fibrosis.  J Pediatr. 1996;  129 367-373
  • 28 Lucas A, Prentice A M, Shepherd R W. Energy expenditure and cystic fibrosis.  Lancet. 1988;  2 737
  • 29 Feigal R J, Shapiro B L. Mitochondrial calcium uptake and oxygen consumption in cystic fibrosis.  Nature. 1979;  278 276-277
  • 30 Bell C L, Quinton P M. Regulation of CFTR Cl- conductance in secretion by cellular energy levels.  Am J Physiol. 1993;  264(4 Pt 1) C925-C931
  • 31 Bronstein M N, Davies P S, Hambidge K M, Accurso F J. Normal energy expenditure in the infant with presymptomatic cystic fibrosis.  J Pediatr. 1995;  126 28-33
  • 32 Bines J E, Truby H D, Armstrong D S, Phelan P D, Grimwood K. Energy metabolism in infants with cystic fibrosis.  J Pediatr. 2002;  140 527-533
  • 33 Fried M D, Durie P R, Tsui L C, Corey M, Levison H, Pencharz P B. The cystic fibrosis gene and resting energy expenditure.  J Pediatr. 1991;  119 913-916
  • 34 Zemel B S, Jawad A F, FitzSimmons S, Stallings V A. Longitudinal relationship among growth, nutritional status, and pulmonary function in children with cystic fibrosis: analysis of the Cystic Fibrosis Foundation National CF Patient Registry.  J Pediatr. 2000;  137 374-380
  • 35 Elborn J S, Bell S C. Nutrition and survival in cystic fibrosis.  Thorax. 1996;  51 971-972
  • 36 Gaskin K J, Waters D L, Soutter V L et al.. Body composition in cystic fibrosis.  Basic Life Sci. 1990;  55 15-21
  • 37 Assael B M, Casazza G, Iansa P, Volpi S, Milani S. Growth and long-term lung function in cystic fibrosis: a longitudinal study of patients diagnosed by neonatal screening.  Pediatr Pulmonol. 2009;  44 209-215
  • 38 Thomson M A, Quirk P, Swanson C E et al.. Nutritional growth retardation is associated with defective lung growth in cystic fibrosis: a preventable determinant of progressive pulmonary dysfunction.  Nutrition. 1995;  11 350-354
  • 39 Shils M E, Olson J A, Shike M, Ross A C. Modern Nutrition in Health and Disease. Baltimore; Williams and Wilkins 1999
  • 40 Henderson R C, Madsen C D. Bone mineral content and body composition in children and young adults with cystic fibrosis.  Pediatr Pulmonol. 1999;  27 80-84
  • 41 Spicher V, Roulet M, Schaffner C, Schutz Y. Bio-electrical impedance analysis for estimation of fat-free mass and muscle mass in cystic fibrosis patients.  Eur J Pediatr. 1993;  152 222-225
  • 42 Tomezsko J L, Scanlin T F, Stallings V A. Body composition of children with cystic fibrosis with mild clinical manifestations compared with normal children.  Am J Clin Nutr. 1994;  59 123-128
  • 43 Allen J R, Humphries I R, McCauley J C et al.. Assessment of body composition of children with cystic fibrosis (CF).  Appl Radiat Isot. 1998;  49 591-592
  • 44 Zemel B S, Kawchak D A, Cnaan A, Zhao H, Scanlin T F, Stallings V A. Prospective evaluation of resting energy expenditure, nutritional status, pulmonary function, and genotype in children with cystic fibrosis.  Pediatr Res. 1996;  40 578-586
  • 45 Stettler N, Kawchak D A, Boyle L L et al.. Prospective evaluation of growth, nutritional status, and body composition in children with cystic fibrosis.  Am J Clin Nutr. 2000;  72 407-413
  • 46 Holt T L, Ward L C, Francis P J, Isles A, Cooksley W G, Shepherd R W. Whole body protein turnover in malnourished cystic fibrosis patients and its relationship to pulmonary disease.  Am J Clin Nutr. 1985;  41 1061-1066
  • 47 Miller M, Ward L, Thomas B J, Cooksley W G, Shepherd R W. Altered body composition and muscle protein degradation in nutritionally growth-retarded children with cystic fibrosis.  Am J Clin Nutr. 1982;  36 492-499
  • 48 Shepherd R W, Holt T L, Thomas B J et al.. Nutritional rehabilitation in cystic fibrosis: controlled studies of effects on nutritional growth retardation, body protein turnover, and course of pulmonary disease.  J Pediatr. 1986;  109 788-794
  • 49 Shepherd R W, Holt T L, Johnson L P, Quirk P, Thomas B J. Leucine metabolism and body cell mass in cystic fibrosis.  Nutrition. 1995;  11 138-141
  • 50 Asher M I, Pardy R L, Coates A L, Thomas E, Macklem P T. The effects of inspiratory muscle training in patients with cystic fibrosis.  Am Rev Respir Dis. 1982;  126 855-859
  • 51 Szeinberg A, England S, Mindorff C, Fraser I M, Levison H. Maximal inspiratory and expiratory pressures are reduced in hyperinflated, malnourished, young adult male patients with cystic fibrosis.  Am Rev Respir Dis. 1985;  132 766-769
  • 52 Lands L, Desmond K J, Demizio D, Pavilanis A, Coates A L. The effects of nutritional status and hyperinflation on respiratory muscle strength in children and young adults.  Am Rev Respir Dis. 1990;  141 1506-1509
  • 53 Hanning R M, Blimkie C J, Bar-Or O, Lands L C, Moss L A, Wilson W M. Relationships among nutritional status and skeletal and respiratory muscle function in cystic fibrosis: does early dietary supplementation make a difference?.  Am J Clin Nutr. 1993;  57 580-587
  • 54 Rosenthal M, Narang I, Edwards L, Bush A. Non-invasive assessment of exercise performance in children with cystic fibrosis (CF) and non-cystic fibrosis bronchiectasis: is there a CF specific muscle defect?.  Pediatr Pulmonol. 2009;  44 222-230
  • 55 Mansell A L, Andersen J C, Muttart C R et al.. Short-term pulmonary effects of total parenteral nutrition in children with cystic fibrosis.  J Pediatr. 1984;  104 700-705
  • 56 Steinkamp G, von der Hardt H. Improvement of nutritional status and lung function after long-term nocturnal gastrostomy feedings in cystic fibrosis.  J Pediatr. 1994;  124 244-249
  • 57 Hardin D S, Ellis K J, Dyson M, Rice J, McConnell R, Seilheimer D K. Growth hormone improves clinical status in prepubertal children with cystic fibrosis: results of a randomized controlled trial.  J Pediatr. 2001;  139 636-642
  • 58 Schibler A, von der Heiden R, Birrer P, Mullis P E. Prospective randomised treatment with recombinant human growth hormone in cystic fibrosis.  Arch Dis Child. 2003;  88 1078-1081
  • 59 Borowitz D, Baker R D, Stallings V. Consensus report on nutrition for pediatric patients with cystic fibrosis.  J Pediatr Gastroenterol Nutr. 2002;  35 246-259
  • 60 Borowitz D S, Grand R J, Durie P R. Consensus Committee . Use of pancreatic enzyme supplements for patients with cystic fibrosis in the context of fibrosing colonopathy.  J Pediatr. 1995;  127 681-684
  • 61 Schibli S, Durie P R, Tullis E D. Proper usage of pancreatic enzymes.  Curr Opin Pulm Med. 2002;  8 542-546
  • 62 Munck A, Duhamel J-F, Lamireau T et al.. Pancreatic enzyme replacement therapy for young cystic fibrosis patients.  J Cyst Fibros. 2009;  8 14-18
  • 63 Conway S P, Morton A, Wolfe S. Enteral tube feeding for cystic fibrosis.  Cochrane Database Syst Rev. 2000;  (2) CD001198
  • 64 Kawchak D A, Zhao H, Scanlin T F, Tomezsko J L, Cnaan A, Stallings V A. Longitudinal, prospective analysis of dietary intake in children with cystic fibrosis.  J Pediatr. 1996;  129 119-129
  • 65 Morrison J M, O’Rawe A, McCracken K J, Redmond A OB, Dodge J A. Energy intakes and losses in cystic fibrosis.  J Hum Nutr Diet. 1994;  7 39-46
  • 66 Leonard A, Davis E, Rosenstein B J et al.. Description of a standardized nutrition classification plan and its relation to nutritional outcomes in children with cystic fibrosis.  J Pediatr Psychol. 2009;  , May 6 (EPub ahead of print)
  • 67 Tanner J M. Growth at Adolescence. Oxford; Blackwell Scientific 1962
  • 68 Luo Z C, Low L C, Karlberg J. A comparison of target height estimated and final height attained between Swedish and Hong Kong Chinese children.  Acta Paediatr. 1999;  88 248-252
  • 69 Budd J, Warwick W J, Wielinski C L. A Medical Information Relational Database System (MIRDS).  Comput Biomed Res. 1988;  21 419-433

Carlos E MillaM.D. 

The Stanford Cystic Fibrosis Center, Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine

770 Welch Rd., Ste. 350, MC 5882, Palo Alto, CA 94304

Email: cmilla@stanford.edu