Subscribe to RSS
DOI: 10.1055/s-0029-1241178
© Georg Thieme Verlag KG Stuttgart · New York
Growth Control of Normal and Malignant Lymphocytes – Cell Death Research from Basic Concepts to Signal Pathways and Translation into the Clinic
Wachstumskontrolle normaler und maligner Lymphozyten – Zelltodforschung von grundlegenden Konzepten über Signalwege zu klinischer AnwendungPublication History
Publication Date:
04 November 2009 (online)
Abstract
Twenty years ago the fist bona fide death receptor, APO-1/FAS/CD95 was discovered along with the pathways that regulate programmed cell death or apoptosis. From the very beginning, this research was considered to have substantial impact on diseases and to provide a rational strategy for therapeutic intervention. In particular cell death research proved to be the key for the development of novel strategies for cancer therapy. In the past two decades, deregulated apoptosis in tumors has been delineated and possible targets for therapeutic intervention have been identified. However, it still took a long way until this work could be translated into clinical trials only in the past few years. Current strategies involve modification of apoptosis signalling based on our knowledge of sensitivity and resistance for apoptosis induction rather than the use of individual agents for cytotoxicity. In this review, an overview of the developments in the field from basic discoveries to the recent clinical trials is given.
Zusammenfassung
Vor 20 Jahren wurde Apo-1/Fas/CD95 als erster Rezeptor mit nahezu ausschließlicher Vermittlung von Zelltod gemeinsam mit Elementen der Signalwege, die programmierten Zelltod oder Apoptose regulieren, entdeckt. Sehr früh konnte man davon ausgehen, dass diese Forschung erheblichen Einfluss auf Verständnis und Entwicklung rationaler Strategien zur therapeutischen Behandlung einer Vielzahl von Erkrankungen haben wird. Insbesondere für die Entwicklung neuer Therapiekonzepte in der Krebstherapie hat sich die Erforschung der Zelltodesprogramme als wichtig erwiesen. In den letzten beiden Dekaden wurden die Grundlagen der deregulierten Apoptose in Tumoren charakterisiert und mögliche Zielstrukturen für therapeutische Interventionen identifiziert. Dennoch hat es lange Zeit gedauert, bis diese grundlegenden Erkenntnisse erst in den letzten Jahren in klinische Studien umgesetzt werden konnten. Die gegenwärtigen Strategien entwickeln auf Grundlage unseres Verständnisses von Sensitivität und Resistenz für Apoptoseinduktion Therapiekonzepte zur Modifikation von Apoptosesignalwegen. Die Anwendung einzelner Apoptose induzierender Substanzen steht demgegenüber zukünftig wohl im Hintergrund. In diesem Review wird eine Übersicht insbesondere über die Entwicklung in diesem Forschungsgebiet von den grundlegenden Entdeckungen bis zu den derzeit laufenden klinischen Studien gegeben.
Key words
apoptosis - signal pathways - cancer therapy - sensitivity and resistance in tumors
Schlüsselwörter
Apoptose - Signalwege - Krebstherapie - Sensitivität und Resistenz in Tumoren
Literatur
- 1 Debatin KM. et al . Monoclonal-antibody-mediated apoptosis in adult T-cell leukaemia. Lancet. 1990; 335 497-500
- 2 Debatin K-M. et al . Chemotherapy: Targeting the mitochondrial cell death pathway. Oncogene. 2002; 21 8786-8803
- 3 Debatin K-M, Krammer PH. Death receptors in chemotherapy and cancer. Oncogene. 2004; 23 2950-2966
- 4 Deveraux QL. et al . X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 1997; 388 300-304
- 5 Dhein J. et al . Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature. 1995; 373 438-441
- 6 Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986; 44 817-829
- 7 Enari M. et al . Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature. 1995; 375 78-81
- 8 Friesen C. et al . Involvement of the CD95 (APO-1/Fas) receptor/ligand system in drug induced apoptosis in leukemia cells. Nat Med. 1996; 2 574-577
- 9 Fuchs H. et al . Residual CD95-Pathway Function in Children with Autoimmune Lymphoproliferative Syndrome is independent from clinical state and genotype of CD95 mutation. Pediatr Res. 2009; 65 163-168
- 10 Fulda S, Debatin K-M. IFN-γ sensitizes for apoptosis by upregulating caspase-8 expression through the Stat-I pathway. Oncogene. 2002; 21 2295-2308
- 11 Fulda S. et al . Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med. 2002; 8 808-815 Epub 2002 Jul 15
- 12 Fulda S, Debatin K-M. 5-Aza-2′-deoxycytidine and IFNg cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8. Oncogene. 2006; 25 5125-5133
- 13 Fulda S. et al . Loss of caspase-8 expression does not correlate with MYCN amplification, aggressive disease or prognosis in neuroblastoma. Cancer Res. 2006; 66 10016-10023
- 14 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100 57-70
- 15 Hengartner MO. et al . Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature. 1992; 356 494-499
- 16 Hengartner MO, Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell. 1994; 76 665-676
- 17 Hockenbery D. et al . Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990; 348 267-374
- 18 Itoh N. et al . The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 1991; 66 233-243
- 19 Jeremias I. et al . Involvement of CD95/Apo-1/Fas in cell death following myocardial ischemia. Circulation. 2000; 102 915-920
- 20 Kerr JF. et al . Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972; 26 239-257
- 21 Martin-Villalba A. et al . CD95 ligand (Fas Ligand/APO-1L) and TRAIL mediate ischemia-induced apoptosis in neurons. J Neurosci. 1999; 19 3809-3817
- 22 McDonnell TJ. et al . bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell. 1989; 57 79-88
- 23 Meyer L-H. et al . Cytochrome c related caspase activation determines treatment response and relapse in childhood B-precursor ALL. Blood. 2006; 107 4524-4531 Epub 2006 Feb 7
- 24 Meyer LH. et al . Intact apoptosis signaling in myeloid leukaemia cells determines treatment outcome in childhood AML. Blood. 2008; 111 2899-2903 Epub 2007 Dec 14
- 25 Muzio M. et al . FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell. 1996; 85 817-827
- 26 Nicholson DW. et al . Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995; 376 37-43
- 27 Opel D. et al . Activation of Akt predicts poor outcome in neuroblastoma. Cancer Res. 2007; 67 735-745
- 28 Pauly E. et al . Analysis of the CD95 ligand gene in 20 children with autoimmunue lymphoproliferative syndrome (ALPS). Blood. 2006; 108 3622-3623
- 29 Rieux-Laucat F. et al . Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995; 268 1347-1349
- 30 Scaffidi C. et al . Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998; 17 1675-1687
- 31 Stahnke K. et al . Apoptosis induction in peripheral leukemia cells by remission induction treatment in vivo: Selective depletion and apoptosis in a CD34+ subpopulation of leukemia cells. Leukemia. 2003; 17 2130-2139
- 32 Strasser A. et al . Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature. 1990; 348 331-333
- 33 Strauss G. et al . CD95 co-stimulation blocks activation of naïve T cells by inhibiting T cell receptor signalling. J Exp Med. 2009; 206 1379-1393 Epub 2009 Jun 1
- 34 Suda T. et al . Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993; 75 1169-1178
- 35 Tewari M. et al . Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 1995; 81 801-809
- 36 Trauth BC. et al . Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science. 1989; 245 301-305
- 37 Tsujimoto Y. et al . Cloning of the chromosome breakpoint of neoplastic B cells with the t (14;18) chromosome translocation. Science. 1984; 226 1097-1099
- 38 Vaux DL. et al . Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988; 335 440-442
- 39 Vaux DL. et al . Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science. 1992; 258 1955-1957
- 40 Vogler M. et al . Targeting XIAP bypasses Bcl-2-mediated resistance to TRAIL and cooperates with TRAIL to suppress pancreatic cancer growth in vitro and in vivo. Cancer Res. 2008; 68 7956-7965
- 41 Watanabe-Fukunaga R. et al . Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992; 356 314-317
- 42 Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980; 284 555-556
- 43 Yonehara S. et al . A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med. 1989; 169 1747-1756
- 44 Yuan JY, Horvitz HR. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol. 1990; 138 33-41
- 45 Yuan J. et al . The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell. 1993; 75 641-652
Correspondence
Prof. Dr. Klaus-Michael Debatin
Universitätsklinik fü Kinder- und Jugendmedizin
Klinikbereich Michelsberg
Kinderonkologisches
Zentrum
Eythstraße 24
89081 Ulm
Germany
Phone: +49/731/500 57002
Fax: +49/731/500 57001
Email: klaus-michael.debatin@uniklinik-ulm.de