Horm Metab Res 2010; 42(3): 215-221
DOI: 10.1055/s-0029-1242745
Humans, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Determinants of Exercise-induced Fat Oxidation in Obese Women and Men

S. Haufe1 , S. Engeli2 , P. Budziarek1 , W. Utz3 , J. Schulz-Menger3 , M. Hermsdorf1 , S. Wiesner1 , C. Otto1 , J. C. Fuhrmann4 , F. C. Luft1 , M. Boschmann1 , J. Jordan2
  • 1Franz Volhard Clinical Research Center at the Experimental and Clinical Research Center, Charité University Medical School and Max Delbrück Center for Molecular Medicine, Berlin, Germany
  • 2Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
  • 3Franz Volhard Clinic, Charité University Medical School and Helios Klinikum, Berlin, Germany
  • 4Metanomics GmbH, Berlin, Germany
Further Information

Publication History

received 03.08.2009

accepted 22.10.2009

Publication Date:
23 November 2009 (online)

Abstract

Endurance training at an intensity eliciting maximal fat oxidation may have a beneficial effect on body weight and glucose metabolism in obese patients. However, the exercise intensity at which maximal fat oxidation occurs and the factors limiting fat oxidation are not well studied in this population. Obese, otherwise healthy men (n=38) and women (n=91) performed an incremental exercise test up to exhaustion on a cycle ergometer. Substrate oxidation was estimated using indirect calorimetry. Magnetic resonance tomography and spectroscopy were conducted to assess body fat distribution and intramyocellular fat content. We determined the exercise intensity at which maximal body fat oxidation occurs and assessed whether body composition, body fat distribution, intramyocellular fat content, or oxidative capacity predict exercise-induced fat oxidation. Maximal exercise-induced fat oxidation was 0.30±0.02 g/min in men and 0.23±0.01 g/min in women (p<0.05). Exercise intensity at the maximum fat oxidation was 42±2.2% VO2max in men and 43±1.7% VO2max in women. With multivariate analysis, exercise-induced fat oxidation was related to fat-free mass, percent fat mass, and oxidative capacity, but not to absolute fat mass, visceral fat, or intramyocellular fat content. We conclude that in obese subjects the capacity to oxidize fat during exercise appears to be limited by skeletal muscle mass and oxidative capacity rather than the availability of visceral or intramyocellular fat.

References

  • 1 Jakicic JM, Clark K, Coleman E, Donnelly JE, Foreyt J, Melanson E, Volek J, Volpe SL. American College of Sports Medicine position stand. Appropriate intervention strategies for weight loss and prevention of weight regain for adults.  Med Sci Sports Exerc. 2001;  33 2145-2156
  • 2 Poirier P, Despres JP. Exercise in weight management of obesity.  Cardiol Clin. 2001;  19 459-470
  • 3 Blaak EE. Basic disturbances in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes mellitus.  Proc Nutr Soc. 2004;  63 323-330
  • 4 Dumortier M, Brandou F, Perez-Martin A, Fedou C, Mercier J, Brun JF. Low intensity endurance exercise targeted for lipid oxidation improves body composition and insulin sensitivity in patients with the metabolic syndrome.  Diabetes Metab. 2003;  29 509-518
  • 5 Venables MC, Jeukendrup AE. Endurance training and obesity: effect on substrate metabolism and insulin sensitivity.  Med Sci Sports Exerc. 2008;  40 495-502
  • 6 Achten J, Gleeson M, Jeukendrup AE. Determination of the exercise intensity that elicits maximal fat oxidation.  Med Sci Sports Exerc. 2002;  34 92-97
  • 7 Knechtle B, Muller G, Willmann F, Kotteck K, Eser P, Knecht H. Fat oxidation in men and women endurance athletes in running and cycling.  Int J Sports Med. 2004;  25 38-44
  • 8 van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ. The effects of increasing exercise intensity on muscle fuel utilisation in humans.  J Physiol. 2001;  536 295-304
  • 9 Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study.  J Appl Physiol. 2005;  98 160-167
  • 10 Bircher S, Knechtle B, Müller G, Knecht H. Is the highest fat oxidation rate coincident with the anaerobic threshold in obese women and men?.  Eur J Sport Sci. 2005;  5 79-87
  • 11 Bircher S, Knechtle B. Relationship between fat oxiadtion and lactate threshold in obese women and men.  J Sports Sci Med. 2004;  3 174-781
  • 12 Perez-Martin A, Dumortier M, Raynaud E, Brun JF, Fedou C, Bringer J, Mercier J. Balance of substrate oxidation during submaximal exercise in lean and obese people.  Diabetes Metab. 2001;  27 466-474
  • 13 Horton TJ, Pagliassotti MJ, Hobbs K, Hill JO. Fuel metabolism in men and women during and after long-duration exercise.  J Appl Physiol. 1998;  85 1823-1832
  • 14 Roepstorff C, Steffensen CH, Madsen M, Stallknecht B, Kanstrup IL, Richter EA, Kiens B. Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects.  Am J Physiol Endocrinol Metab. 2002;  282 E435-E447
  • 15 Zehnder M, Ith M, Kreis R, Saris W, Boutellier U, Boesch C. Gender-specific usage of intramyocellular lipids and glycogen during exercise.  Med Sci Sports Exerc. 2005;  37 1517-1524
  • 16 Dickhuth HH, Huonker M, Münzel T, Drexler H, Berg A, Keul J. Individual anaerobic threshold for evaluation of competitive athletes and patients with left ventricular dysfunction. In: Bachl M, Graham TE, Löllgen H, ed. Advances in Ergometry. Berlin: Springer 1991: 173-179
  • 17 Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange.  J Appl Physiol. 1983;  55 628-634
  • 18 Atwater WO. Coefficients of digestibility and availability of the nutrients of food.  Proc Am Physiol Soc. 1909;  30 14-19
  • 19 Fox SM, Naughton JP, Haskell WL. Physical activity and the prevention of coronary heart disease.  Ann Clin Res. 1971;  3 404-432
  • 20 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;  28 412-419
  • 21 Nordby P, Saltin B, Helge JW. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity?.  Scand J Med Sci Sports. 2006;  16 209-214
  • 22 Stisen AB, Stougaard O, Langfort J, Helge JW, Sahlin K, Madsen K. Maximal fat oxidation rates in endurance trained and untrained women.  Eur J Appl Physiol. 2006;  98 497-506
  • 23 Bircher S, Knechtle B, Knecht H. Is the intensity of the highest fat oxidation at the lactate concentration of 2 mmol L(-1)? A comparison of two different exercise protocols.  Eur J Clin Invest. 2005;  35 491-498
  • 24 Deriaz O, Dumont M, Bergeron N, Despres JP, Brochu M, Prud’homme D. Skeletal muscle low attenuation area and maximal fat oxidation rate during submaximal exercise in male obese individuals.  Int J Obes Relat Metab Disord. 2001;  25 1579-1584
  • 25 Horowitz JF. Fatty acid mobilization from adipose tissue during exercise.  Trends Endocrinol Metab. 2003;  14 386-392
  • 26 Goodpaster BH, Wolfe RR, Kelley DE. Effects of obesity on substrate utilization during exercise.  Obes Res. 2002;  10 575-584
  • 27 Mittendorfer B, Fields DA, Klein S. Excess body fat in men decreases plasma fatty acid availability and oxidation during endurance exercise.  Am J Physiol Endocrinol Metab. 2004;  286 E354-E362
  • 28 Arner P. Human fat cell lipolysis: biochemistry, regulation and clinical role.  Best Pract Res Clin Endocrinol Metab. 2005;  19 471-482
  • 29 Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, Rodes-Cabau J, Bertrand OF, Poirier P. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk.  Arterioscler Thromb Vasc Biol. 2008;  28 1039-1049
  • 30 Boschmann M, Rosenbaum M, Leibel RL, Segal KR. Metabolic and hemodynamic responses to exercise in subcutaneous adipose tissue and skeletal muscle.  Int J Sports Med. 2002;  23 537-543
  • 31 Horowitz JF, Klein S. Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity.  J Appl Physiol. 2000;  89 2276-2282
  • 32 Kriketos AD, Baur LA, O’Connor J, Carey D, King S, Caterson ID, Storlien LH. Muscle fibre type composition in infant and adult populations and relationships with obesity.  Int J Obes Relat Metab Disord. 1997;  21 796-801
  • 33 Schrauwen P, Hesselink MK. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes.  Diabetes. 2004;  53 1412-1417
  • 34 Iossa S, Mollica MP, Lionetti L, Crescenzo R, Tasso R, Liverini G. A possible link between skeletal muscle mitochondrial efficiency and age-induced insulin resistance.  Diabetes. 2004;  53 2861-2866
  • 35 Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes.  Science. 2005;  307 384-387
  • 36 Blomstrand E, Radegran G, Saltin B. Maximum rate of oxygen uptake by human skeletal muscle in relation to maximal activities of enzymes in the Krebs cycle.  J Physiol. 1997;  501 ((Pt 2)) 455-460
  • 37 Lundgren M, Buren J, Lindgren P, Myrnas T, Ruge T, Eriksson JW. Sex- and depot-specific lipolysis regulation in human adipocytes: interplay between adrenergic stimulation and glucocorticoids.  Horm Metab Res. 2008;  40 854-860
  • 38 Carter SL, Rennie C, Tarnopolsky MA. Substrate utilization during endurance exercise in men and women after endurance training.  Am J Physiol Endocrinol Metab. 2001;  280 E898-E907
  • 39 Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration.  Am J Physiol. 1993;  265 E380-E391
  • 40 Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements.  Int J Sports Med. 2005;  26 ((Suppl 1)) S28-S37
  • 41 Campbell SE, Febbraio MA. Effect of ovarian hormones on mitochondrial enzyme activity in the fat oxidation pathway of skeletal muscle.  Am J Physiol Endocrinol Metab. 2001;  281 E803-E808
  • 42 Paquette A, Chapados NA, Bergeron R, Lavoie JM. Fatty acid oxidation is decreased in the liver of ovariectomized rats.  Horm Metab Res. 2009;  41 511-515
  • 43 Dean TM, Perreault L, Mazzeo RS, Horton TJ. No effect of menstrual cycle phase on lactate threshold.  J Appl Physiol. 2003;  95 2537-2543
  • 44 Kanaley JA, Boileau RA, Bahr JA, Misner JE, Nelson RA. Substrate oxidation and GH responses to exercise are independent of menstrual phase and status.  Med Sci Sports Exerc. 1992;  24 873-880
  • 45 Suh SH, Casazza GA, Horning MA, Miller BF, Brooks GA. Effects of oral contraceptives on glucose flux and substrate oxidation rates during rest and exercise.  J Appl Physiol. 2003;  94 285-294

Correspondence

J. JordanMD 

Institute for Clinical Pharmacology

Hannover Medical School

Carl-Neuberg-Straße 1

30625 Hannover

Germany

Phone: +49 511 532 2821

Fax: +49 511 532 2750

Email: jordan.jens@mh-hannover.de