Subscribe to RSS
DOI: 10.1055/s-0029-1243253
© Georg Thieme Verlag KG Stuttgart · New York
Aldosterone Causes DNA Strand Breaks and Chromosomal Damage in Renal Cells, Which are Prevented by Mineralocorticoid Receptor Antagonists
Publication History
received 06.08.2009
accepted 18.11.2009
Publication Date:
21 January 2010 (online)
Abstract
Epidemiological studies exploring the connection between hypertension and cancer incidence find a higher cancer mortality in hypertensive patients, particularly elevated in hypertension associated with a stimulation of the renin-angiotensin-aldosterone system. Primary aldosteronism, with plasma aldosterone levels between 0.5 and 1 nM (18–36 ng/dL) and local aldosterone levels up to 500 nM (18,000 ng/dL), is now recognised as a more common cause for hypertension. We recently found angiotensin II to be genotoxic due to its induction of oxidative stress. Since aldosterone in higher concentrations also has oxidative effects, its potential genotoxic action in pig LLC-PK1 cells with properties of proximal tubules was analysed. DNA damage was evaluated by two test systems: the comet assay, and the micronucleus frequency test. The results showed that aldosterone concentrations starting from 10 nM (360 ng/dL) caused a significant increase of DNA damage monitored with the comet assay in LLC-PK1, while there was no change in cell vitality and proliferation. The micronucleus frequency test revealed that 10 nM aldosterone also leads to the formation of micronuclei. Furthermore, the formation of superoxide radicals in the cells by this aldosterone concentration could be detected with the superoxide-specific stain dihydroethidium. Further evidence for oxidative stress-induced DNA damage was its reversibility by the antioxidants tempol and catalase. Addition of the steroidal mineralocorticoid receptor antagonist spironolactone or the novel selective nonsteroidal antagonist (R)-BR-4628 reduced the DNA damage and the amount of superoxide radicals indicating a receptor-dependent process.
Key words
oxidative stress - micronuclei - superoxide - spironolactone
References
- 1 Marney AM, Brown NJ. Aldosterone and end-organ damage. Clin Sci (Lond). 2007; 113 267-278
- 2 Connell JM, Davies E. The new biology of aldosterone. J Endocrinol. 2005; 186 1-20
- 3 Good DW. Nongenomic actions of aldosterone on the renal tubule. Hypertension. 2007; 49 728-739
- 4 Boldyreff B, Wehling M. Rapid aldosterone actions: from the membrane to signaling cascades to gene transcription and physiological effects. J Steroid Biochem Mol Biol. 2003; 85 375-381
- 5 Funder JW. Minireview: aldosterone and the cardiovascular system: genomic and nongenomic effects. Endocrinology. 2006; 147 5564-5567
- 6 Funder J, New MI. Low renin hypertension (LRH): shades of John Laragh. Trends Endocrinol Metab. 2008; 19 83
- 7 Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, Ganzaroli C, Giacchetti G, Letizia C, Maccario M, Mallamaci F, Mannelli M, Mattarello MJ, Moretti A, Palumbo G, Parenti G, Porteri E, Semplicini A, Rizzoni D, Rossi E, Boscaro M, Pessina AC, Mantero F. A prospective study of the prevalence of primary aldosteronism in 1 125 hypertensive patients. J Am Coll Cardiol. 2006; 48 2293-2300
- 8 Gordon RD, Ziesak MD, Tunny TJ, Stowasser M, Klemm SA. Evidence that primary aldosteronism may not be uncommon: 12% incidence among antihypertensive drug trial volunteers. Clin Exp Pharmacol Physiol. 1993; 20 296-298
- 9 Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008; 117 e510-e526
- 10 Krug AW, Ehrhart-Bornstein M. Adrenocortical dysfunction in obesity and the metabolic syndrome. Horm Metab Res. 2008; 40 515-517
- 11 Rossi GP, Sechi LA, Giacchetti G, Ronconi V, Strazzullo P, Funder JW. Primary aldosteronism: cardiovascular, renal and metabolic implications. Trends Endocrinol Metab. 2008; 19 88-90
- 12 Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999; 341 709-717
- 13 Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003; 348 1309-1321
- 14 Nishiyama A, Abe Y. Molecular mechanisms and therapeutic strategies of chronic renal injury: renoprotective effects of aldosterone blockade. J Pharmacol Sci. 2006; 100 9-16
- 15 Epstein M. Aldosterone blockade: an emerging strategy for abrogating progressive renal disease. Am J Med. 2006; 119 912-919
- 16 Remuzzi G, Cattaneo D, Perico N. The aggravating mechanisms of aldosterone on kidney fibrosis. J Am Soc Nephrol. 2008; 19 1459-1462
- 17 Nishiyama A, Hitomi H, Rahman A, Kiyomoto H. Drug discovery for overcoming chronic kidney disease (CKD): pharmacological effects of mineralocorticoid-receptor blockers. J Pharmacol Sci. 2009; 109 1-6
- 18 Bianchi S, Bigazzi R, Campese VM. Antagonists of aldosterone and proteinuria in patients with CKD: an uncontrolled pilot study. Am J Kidney Dis. 2005; 46 45-51
- 19 Quinkler M, Zehnder D, Eardley KS, Lepenies J, Howie AJ, Hughes SV, Cockwell P, Hewison M, Stewart PM. Increased expression of mineralocorticoid effector mechanisms in kidney biopsies of patients with heavy proteinuria. Circulation. 2005; 112 1435-1443
- 20 Tylicki L, Rutkowski P, Renke M, Larczynski W, Aleksandrowicz E, Lysiak-Szydlowska W, Rutkowski B. Triple pharmacological blockade of the renin-angiotensin-aldosterone system in nondiabetic CKD: an open-label crossover randomized controlled trial. Am J Kidney Dis. 2008; 52 486-493
- 21 Grossman E, Messerli FH, Boyko V, Goldbourt U. Is there an association between hypertension and cancer mortality?. Am J Med. 2002; 112 479-486
- 22 Friis S, Sorensen HT, Mellemkjaer L, McLaughlin JK, Nielsen GL, Blot WJ, Olsen JH. Angiotensin-converting enzyme inhibitors and the risk of cancer: a population-based cohort study in Denmark. Cancer. 2001; 92 2462-2470
- 23 Moore LE, Wilson RT, Campleman SL. Lifestyle factors, exposures, genetic susceptibility, and renal cell cancer risk: a review. Cancer Invest. 2005; 23 240-255
- 24 Schupp N, Schmid U, Rutkowski P, Lakner U, Kanase N, Heidland A, Stopper H. Angiotensin II-induced genomic damage in renal cells can be prevented by angiotensin II type 1 receptor blockage or radical scavenging. Am J Physiol Renal Physiol. 2007; 292 F1427-F1434
- 25 Schmid U, Stopper H, Schweda F, Queisser N, Schupp N. Angiotensin II induces DNA damage in the kidney. Cancer Res. 2008; 68 9239-9246
- 26 Drumm K, Kress TR, Gassner B, Krug AW, Gekle M. Aldosterone stimulates activity and surface expression of NHE3 in human primary proximal tubule epithelial cells (RPTEC). Cell Physiol Biochem. 2006; 17 21-28
- 27 Leite-Dellova DC, Oliveira-Souza M, Malnic G, Mello-Aires M. Genomic and nongenomic dose-dependent biphasic effect of aldosterone on Na+/H+ exchanger in proximal S3 segment: role of cytosolic calcium. Am J Physiol Renal Physiol. 2008; 295 F1342-F1352
- 28 Patni H, Mathew JT, Luan L, Franki N, Chander PN, Singhal PC. Aldosterone promotes proximal tubular cell apoptosis: role of oxidative stress. Am J Physiol Renal Physiol. 2007; 293 F1065-F1071
- 29 Leckie C, Chapman KE, Edwards CR, Seckl JR. LLC-PK1 cells model 11 beta-hydroxysteroid dehydrogenase type 2 regulation of glucocorticoid access to renal mineralocorticoid receptors. Endocrinology. 1995; 136 5561-5569
- 30 Kolkhof P, Hillisch A, Schäfer S. Severe early-onset hypertension induced by a mineralocorticoid receptor (MR) gain-of-function mutation: differential effects of steroidal versus non-steroidal antagonists. Eur Heart J. 2007; 28 769
- 31 Yang H, Acker J, Chen A, McGann L. In situ assessment of cell viability. Cell Transplant. 1998; 7 443-451
- 32 Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000; 132 365-386
-
33
Rasband WS.
Image J. In. Bethesda, Maryland, USA: U. S. National Institutes of Health 1997–2008
- 34 Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988; 175 184-191
- 35 Burlinson B, Tice RR, Speit G, Agurell E, Brendler-Schwaab SY, Collins AR, Escobar P, Honma M, Kumaravel TS, Nakajima M, Sasaki YF, Thybaud V, Uno Y, Vasquez M, Hartmann A. Fourth International Workgroup on Genotoxicity testing: results of the in vivo Comet assay workgroup. Mutat Res. 2007; 627 31-35
- 36 Brendler-Schwaab S, Hartmann A, Pfuhler S, Speit G. The in vivo comet assay: use and status in genotoxicity testing. Mutagenesis. 2005; 20 245-254
- 37 Maluf SW. Monitoring DNA damage following radiation exposure using cytokinesis-block micronucleus method and alkaline single-cell gel electrophoresis. Clin Chim Acta. 2004; 347 15-24
- 38 Decordier I, Kirsch-Volders M. The in vitro micronucleus test: from past to future. Mutat Res. 2006; 607 2-4
- 39 Calo LA, Pagnin E, Davis PA, Armanini D, Mormino P, Rossi GP, Pessina AC. Oxidative Stress Related Proteins in a Conn's Adenoma Tissue Relevance for Aldosterone's Prooxidative and Proinflammatory Activity. J Endocrinol Invest. 2009 July 21; [Epub ahead of print]
- 40 Iwashima F, Yoshimoto T, Minami I, Sakurada M, Hirono Y, Hirata Y. Aldosterone induces superoxide generation via Rac1 activation in endothelial cells. Endocrinology. 2008; 149 1009-1014
- 41 Yu L, Bao HF, Self JL, Eaton DC, Helms MN. Aldosterone-induced increases in superoxide production counters nitric oxide inhibition of epithelial Na channel activity in A6 distal nephron cells. Am J Physiol Renal Physiol. 2007; 293 F1666-F1677
- 42 Hayashi H, Kobara M, Abe M, Tanaka N, Gouda E, Toba H, Yamada H, Tatsumi T, Nakata T, Matsubara H. Aldosterone nongenomically produces NADPH oxidase-dependent reactive oxygen species and induces myocyte apoptosis. Hypertens Res. 2008; 31 363-375
- 43 Mathew JT, Patni H, Chaudhary AN, Liang W, Gupta A, Chander PN, Ding G, Singhal PC. Aldosterone induces mesangial cell apoptosis both in vivo and in vitro. Am J Physiol Renal Physiol. 2008; 295 F73-F81
- 44 Nagase M, Fujita T. Aldosterone and glomerular podocyte injury. Clin Exp Nephrol. 2008; 12 233-242
- 45 Yoshida K, Kim-Mitsuyama S, Wake R, Izumiya Y, Izumi Y, Yukimura T, Ueda M, Yoshiyama M, Iwao H. Excess aldosterone under normal salt diet induces cardiac hypertrophy and infiltration via oxidative stress. Hypertens Res. 2005; 28 447-455
- 46 Liew D, Krum H. Aldosterone receptor antagonists for hypertension: what do they offer?. Drugs. 2003; 63 1963-1972
- 47 Kushibiki M, Yamada M, Oikawa K, Tomita H, Osanai T, Okumura K. Aldosterone causes vasoconstriction in coronary arterioles of rats via angiotensin II type-1 receptor: influence of hypertension. Eur J Pharmacol. 2007; 572 182-188
- 48 Gauer S, Segitz V, Goppelt-Struebe M. Aldosterone induces CTGF in mesangial cells by activation of the glucocorticoid receptor. Nephrol Dial Transplant. 2007; 22 3154-3159
- 49 Weber KT. Aldosterone in congestive heart failure. N Engl J Med. 2001; 345 1689-1697
- 50 Rossi GP, Pessina AC, Heagerty AM. Primary aldosteronism: an update on screening, diagnosis and treatment. J Hypertens. 2008; 26 613-621
- 51 Young WF. Primary aldosteronism: renaissance of a syndrome. Clin Endocrinol (Oxf). 2007; 66 607-618
- 52 Young WF, Stanson AW, Thompson GB, Grant CS, Farley DR, van Heerden JA. Role for adrenal venous sampling in primary aldosteronism. Surgery. 2004; 136 1227-1235
- 53 Martinet W, Knaapen MW, De Meyer GR, Herman AG, Kockx MM. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation. 2002; 106 927-932
- 54 Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and mitochondrial DNA damage in heart failure. Circ J. 2008; 72 ((Suppl A)) A31-A37
- 55 Andreassi MG. DNA damage, vascular senescence and atherosclerosis. J Mol Med. 2008; 86 1033-1043
1 These authors contributed equally to this work.
Correspondence
Dr. N. Schupp
Institute of Pharmacology and Toxicology
Versbacher Straße 9
97078 Würzburg
Germany
Phone: +49 931 20148722
Fax: +49 931 20148446
Email: nicole.schupp@toxi.uni-wuerzburg.de