Zusammenfassung
Ziel: Wir evaluierten den Einfluss eines interaktiven Atemkontrollsystems bei der CT-gesteuerten Lungenbiopsie auf die Interventionszeit und den technisch erfolgreichen Abschluss. Material und Methoden: Wir führten bei 36 Patienten (4 weiblich, 32 männlich, mittleres Alter 65 Jahre; 33 – 88 Jahre) mit einem Lungenherd eine CT-gesteuerte Lungenbiopsie durch. Wir setzten eine 18G-Tru-cut-Biopsienadel (Cardinal Health, Dublin, UK) in einem 64 Zeilen-Dual-Source-CT (Somatom Definition, Siemens, Forchheim, Deutschland) bei intermittierender Bildgebung der Nadel ein. Bei der Hälfte der Patienten (2 weiblich, 16 männlich, mittleres Alter 67 Jahre) kam zusätzlich ein interaktives Atemkontrollsystem (IBC) (Mayo Clinic Medical Devices, USA) zur Anwendung. In der Kontrollgruppe wurde die Lungenbiopsie ohne ein solches System durchgeführt. Ergebnisse: Die Biopsie wurde bei allen Patienten technisch erfolgreich durchgeführt. Der Durchmesser des Zielherds war in beiden Gruppen vergleichbar (IBC: 30 ± 19 mm; Kontrolle: 28 ± 15 mm). Die Anzahl der benötigten Kontrollbildgebungen war in der IBC-Gruppe signifikant geringer (p < 0,05) und die Interventionszeit signifikant kürzer (p < 0,05) (IBC: 9 ± 5 Bildgebungsschritte, 17 ± 10 min; Kontrolle: 13 ± 5 Bildgebungsschritte, 26 ± 12 min). Schlussfolgerung: Durch Einsatz eines interaktiven Atemkontrollsystems war es möglich, die Interventionszeit und die Strahlenbelastung bei CT-gesteuerten Lungenbiopsien zu reduzieren.
Abstract
Purpose: In this study we assessed the effect of an interactive breath-hold control system on procedure time and technical success in transthoracic CT-guided lung biopsies. Materials and Methods: In 36 patients (4 female, 32 male, mean age 65 years; range 33 – 88) with a pulmonary nodule, we performed CT-guided biopsy using a 18G Tru-cut needle (Cardinal Health, Dublin, UK) in a 64 row dual-source CT scanner (Somatom Definition, Siemens, Forchheim, Germany) using intermittent imaging of the needle. In half of the patients (2 female, 16 male, mean age 67 years), an interactive breath-hold control system (IBC) (Mayo Clinic Medical Devices, USA) was applied. No additional device was used in the control group. Results: The biopsy was visually successful in all patients. The diameter of the target lesion was comparable in both groups (IBC: 30 ± 19 mm; control: 28 ± 15 mm). The number of imaging steps was significantly smaller (p < 0.05) and the intervention time was significantly shorter (p < 0.05) in the IBC group (IBC: 9 ± 5 steps 17 ± 10 min; control: 13 ± 5 steps 26 ± 12 min). Conclusion: Application of the IBC unit reduced the intervention time and radiation exposure in CT-guided Tru-cut biopsy of pulmonary nodules.
Key words
References
1
Klein J S.
Interventional techniques in the thorax.
Clin Chest Med.
1999;
20
805-826
2
Harrison B D, Thorpe R S, Kitchener P G. et al .
Percutaneous Trucut lung biopsy in the diagnosis of localised pulmonary lesions.
Thorax.
1984;
39
493-499
3
Klein J S, Johnson A, Watson E. et al .
CT-guided transthoracic needle biopsy in the diagnosis of sarcoidosis.
J Thorac Imaging.
2009;
24
23-30
4
Klein J S, Zarka M A.
Transthoracic needle biopsy: an overview.
J Thorac Imaging.
1997;
12
232-249
5
Hein P A, Rogalla P, Klessen C. et al .
Computer-aided pulmonary nodule detection – performance of two CAD systems at different CT dose levels.
Röntgenstr Fortschr.
2009;
181
1056-1064
6
Hein P A, Romano V C, Rogalla P. et al .
Linear and volume measurements of pulmonary nodules at different CT dose levels – intrascan and interscan analysis.
Röntgenstr Fortschr.
2009;
181
24-31
7
Honnef D, Behrendt F F, Bakai A. et al .
Computer-aided detection of small pulmonary nodules in multidetector spiral computed tomography (MSCT) in children.
Röntgenstr Fortschr.
2008;
180
540-546, German
8
Connor S, Dyer J, Guest P.
Image-guided automated needle biopsy of 106 thoracic lesions: a retrospective review of diagnostic accuracy and complication rates.
Eur Radiol.
2000;
10
490-494
9
Dupas B, Frampas E, Leaute F. et al .
Complications of fluoroscopy-, ultrasound-, and CT-guided percutaneous interventional procedures.
J Radiol.
2005;
86
586-598
10
Khan M F, Straub R, Moghaddam S R. et al .
Variables affecting the risk of pneumothorax and intrapulmonal hemorrhage in CT-guided transthoracic biopsy.
Eur Radiol.
2008;
18
1356-1363
11
Geraghty P R, Kee S T, McFarlane G. et al .
CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate.
Radiology.
2003;
229
475-481
12
Küçük C U, Yilmaz A, Yilmaz A. et al .
Computed tomography-guided transthoracic fine-needle aspiration in diagnosis of lung cancer: a comparison of single-pass needle and multiple-pass coaxial needle systems and the value of immediate cytological assessment.
Respirology.
2004;
9
392-396
13
Oikonomou A, Matzinger F R, Seely J M. et al .
Ultrathin needle (25 G) aspiration lung biopsy: diagnostic accuracy and complication rates.
Eur Radiol.
2004;
14
375-382
14
D’Alessandro V, Parracino T, Stranieri A. et al .
Computed-tomographic-guided biopsy of thoracic nodules: a revision of 583 lesions.
Clin Ter.
2007;
158
509-513
15
Rijn J C, Bossuyt P M.
Needle size in CT-guided transthoracic needle aspiration biopsy: complications and accuracy.
Radiology.
2004;
232
305
16
Klose K C.
CT-guided large-bore biopsy: extrapleural injection of saline for safe transpleural access to pulmonary lesions.
Cardiovasc Intervent Radiol.
1993;
16
259-261
17
Billich van C, Muche R, Brenner G. et al .
CT-guided lung biopsy: incidence of pneumothorax after instillation of NaCl into the biopsy track.
Eur Radiol.
2008;
18
1146-1152
18
Seyfarth H J, Wirtz H, Borte G. et al .
Ultrasound guided transthoracic biopsy – safety and efficaces.
Pneumologie.
2007;
61
563-567
19
Yang P C.
Ultrasound-guided transthoracic biopsy of the chest.
Radiol Clin North Am.
2000;
38
323-343
20
Sakarya M E, Unal O, Ozbay B. et al .
MR fluoroscopy-guided transthoracic fine-needle aspiration biopsy: feasibility.
Radiology.
2003;
228
589-592
21 Günther R W, Thelen M. Interventionelle Radiologie. Stuttgart; Thieme 1999
22
Yung R C.
Tissue diagnosis of suspected lung cancer: selecting between bronchoscopy, transthoracic needle aspiration, and resectional biopsy.
Respir Care Clin N Am.
2003;
9
51-76
23
Silit E, Kizilkaya E, Okutan O. et al .
CT fluoroscopy-guided percutaneous needle biopsies in thoracic mass lesions.
Eur J Radiol.
2003;
48
193-197
24
Irie T, Kajitani M, Matsueda K. et al .
Biopsy of lung nodules with use of I-I device under intermittent CT fluoroscopic guidance: preliminary clinical study.
J Vasc Interv Radiol.
2001;
12
215-219
25
Carlson S K, Felmlee J P, Bender C E. et al .
CT fluoroscopy-guided biopsy of the lung or upper abdomen with a breath-hold monitoring and feedback system: a prospective randomized controlled clinical trial.
Radiology.
2005;
237
701-708
26
Seppenwoolde Y, Shirato H, Kitamura K. et al .
Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy.
Int J Radiat Oncol Biol Phys.
2002;
53
822-834
27
Robinson P J, Jones K R.
Improved control of respiration during computed tomography by feedback monitoring.
J Comput Assist Tomogr.
1982;
6
802-806
28
Tetzlaff R, Eichinger M, Schöbinger M. et al .
Semiautomatic assessment of respiratory motion in dynamic MRI – comparison with simultaneously acquired spirometry.
Röntgenstr Fortschr.
2008;
180
961-967
29
Krombach G A, Schmitz-Rode T, Wein B B. et al .
Potential of a new laser target system for percutaneous CT-guided nerve blocks: technical note.
Neuroradiology.
2000;
42
838-841
30
Meyer J M, Schmitz-Rode T, Krombach G. et al .
Navi-ball: a new guidance device for CT-directed punctures.
Invest Radiol.
2001;
36
299-302
Dr. Felix Schoth
Diagnostic Radiology, University Hospital, RWTH Aachen
Pauwelsstr 30
52057 Aachen
Germany
Telefon: ++ 49/2 41/8 08 03 22
Fax: ++ 49/2 41/8 08 24 99
eMail: schoth@gmx.de