Zusammenfassung
Die nicht invasive Diagnostik des Herzens mit der Computertomografie (CT) ist eine
bei Patienten mit dem Verdacht auf eine oder einer bekannten koronaren Herzkrankheit
stetig an Bedeutung gewinnende Methode. Zuvorderst hat die CT-Koronarangiografie aufgrund
ihrer bisher nicht erreichten räumlichen und zeitlichen Auflösung bei der Darstellung
der Koronararterien und von koronararteriellen Plaques Aufmerksamkeit erregt. In dieser
moderierten wissenschaftlichen Debatte diskutieren wir die Vor- und Nachteile unterschiedlicher
technischer Ansätze bei der CT des Herzens. Im Detail werden hierbei Entwicklungen
zur Erhöhung der Abdeckung entlang der Z-Achse (320-Zeilen Volumen-CT, schnelle Spiralakquisition
mit hohem Pitch), der Verbesserung der zeitlichen Auflösung (Dual-source CT, Multisegmentrekonstruktion,
und kürzere Gantryrotationszeiten), der Verbesserung der räumlichen Auflösung (verbesserte
Inschichtauflösung) und der Weiterentwicklung der Rekonstruktionsalgorithmen (iterative
Rekonstruktion, Kegelstrahlrekonstruktion) diskutiert. Des Weiteren gehen wir auf
die Notwendigkeit weiterer technischer Entwicklungen mit besonderer Berücksichtigung
der Strahlenexposition ein, die notwendig sein dürften, um die Akzeptanz und klinische
Verbreitung der Methode zu steigern. Zum Abschluss geben die Vertreter der vier Hersteller
einen Einblick in ihre Planungen zu Forschungsprojekten zur CT des Herzens.
Abstract
Noninvasive imaging of the heart using computed tomography (CT) is an increasingly
important diagnostic approach for patients with known or suspected coronary artery
disease. Coronary CT angiography has recently received great attention because it
provides imaging of the coronary arteries and quantification of the coronary plaque
burden with a spatial and temporal resolution not available with any other noninvasive
imaging test. In this moderated scientific debate we discuss the advantages and disadvantages
of different technical solutions to CT imaging of the fast moving heart including
its small and tortuous coronary arteries. Our discussion goes into the details of
developments regarding larger Z-axis coverage (320-row volume CT, high pitch spiral
acquisition), improved temporal resolution (dual-source CT, adaptive multi-segment
reconstruction, and shorter gantry rotation times with air-bearing gantries), improved
spatial resolution (high-definition detectors), and improved reconstruction algorithms
(iterative reconstruction, cone beam reconstruction). The discussion also touches
on the future technological developments that will be necessary to further improve
the acceptance and widespread clinical use of cardiac CT, focusing on radiation exposure
reduction and independence from heart rate. Finally, the representatives of the four
main vendors explain the most important research projects regarding cardiac CT that
they plan to pursue in the near future.
Key words
References
1
Anders K, Baum U, Gauss S. et al .
Initial experience with prospectively triggered, sequential CT coronary angiography
on a 128-slice scanner.
Fortschr Röntgenstr.
2009;
181
332-338
2
Artmann A, Enayati S, Ratzenbock M. et al .
Image Quality of CT Angiography of Coronary Arteries Dependig on the Degree of Coronary
Calcification Using a Dual Source CT Scanner.
Fortschr Röntgenstr.
2009;
181
863-869
3
Dewey M, Hamm B.
Recent trends in cardiovascular imaging as reflected in Fortschr Röntgenstr.
Fortschr Röntgenstr.
2006;
178
953-956
4
Dewey M, Hamm B.
CT coronary angiography: examination technique, clinical results, and outlook on future
developments.
Fortschr Röntgenstr.
2007;
179
246-260
5
Fischbach R, Miller S, Beer M. et al .
Recommendations of the Heart Diagnosis Working Group of the German Roentgen Society
for use of computerized tomography and magnetic resonance tomography in heart diagnosis.
1-Computerized tomography.
Fortschr Röntgenstr.
2009;
181
700-706
6
Koster R, Stevendaal van U, Grass M. et al .
Multi-detector computed tomography to analyze in-stent restenoses at different heart
rates.
Fortschr Röntgenstr.
2008;
180
821-831
7
Wust W, Zunker C, May M. et al .
Septal delineation using a 20 % diluted contrast chaser bolus in coronary CT angiography:
a comparison of 64-slice and dual source CT.
Fortschr Röntgenstr.
2009;
181
324-331
8
Hahn D.
Moderne Schnittbilddiagnostik des Herzens, MRT oder MSCT?.
Fortschr Röntgenstr.
2004;
176
1215-1218
9
Heyer C M, Peters S, Lemburg S.
Structure of the meeting of the german radiological society and scientific discourse
pertaining to radiation dose and dose reduction: an analysis of 1998 – 2008.
Fortschr Röntgenstr.
2009;
181
1065-1072
10
Maurer M H, Hamm B, Dewey M.
Survey regarding the clinical practice of cardiac CT in Germany: indications, scanning
technique and reporting.
Fortschr Röntgenstr.
2009;
181
1135-1143
11
Dewey M, Hamm B.
CT Coronary Angiography: Examination Technique, Clinical Results, and Outlook on Future
Developments.
Fortschr Röntgenstr.
2007;
179
246-260
12
Bansmann P M, Senegas J, Muellerleile K. et al .
Assessment of left ventricular function parameters with a new three-dimensional shape
model.
Fortschr Röntgenstr.
2009;
181
161-168
13
Begemann P G, Stahmer F, Stork A. et al .
Evaluation of two ”fast” software tools for the measurement of left ventricular volumes
in retrospectively ECG-gated multidetector CT of the heart: biplane area-length method
and ”shape tracking” method.
Fortschr Röntgenstr.
2007;
179
572-580
14
Luders F, Fischbach R, Seifarth H. et al .
Dual-Source Computed Tomography: Effect on Regional and Global Left Ventricular Function
Assessment Compared to Magnetic Resonance Imaging.
Fortschr Röntgenstr.
2009;
181
962-969
15
Krug K B, Bovenschulte H, Geissler H J. et al .
In-vivo measurements of coronary blood flow using 16-slice multidetector spiral computed
tomography (MDCT) in a porcine model.
Fortschr Röntgenstr.
2009;
181
220-229
16
Weininger M, Ritter C O, Beer M. et al .
Evaluation of coronary calcifications with 64-slice CT – variability of the scores
and the influence of the reconstruction interval.
Fortschr Röntgenstr.
2007;
179
938-944
17
Weber T F, Klemm H, Koops A. et al .
Integration of cardiac computed tomography into pulmonary vein isolation in patients
with paroxysmal atrial fibrillation.
Fortschr Röntgenstr.
2007;
179
1264-1271
18
Hollander J E, Litt H I, Chase M. et al .
Computed tomography coronary angiography for rapid disposition of low-risk emergency
department patients with chest pain syndromes.
Acad Emerg Med.
2007;
14
112-116
19
Schwarz F, Ruzsics B, Schoepf U J. et al .
Dual-energy CT of the heart – principles and protocols.
Eur J Radiol.
2008;
68
423-433
20
Blankstein R, Shturman L D, Rogers I S. et al .
Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed
tomography.
J Am Coll Cardiol.
2009;
54
1072-1084
21
George R T, Arbab-Zadeh A, Miller J M. et al .
Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion
imaging: a pilot study evaluating the transmural extent of perfusion abnormalities
to predict atherosclerosis causing myocardial ischemia.
Circ Cardiovasc Imaging.
2009;
2
174-182
22
Weigold W G, Olszewski M E, Walker M J.
Low-dose prospectively gated 256-slice coronary computed tomographic angiography.
Int J Card Imaging.
2009;
25
217-230
23
Klass O, Walker M, Siebach A. et al .
Prospectively gated axial CT coronary angiography: comparison of image quality and
effective radiation dose between 64- and 256-slice CT.
Eur Radiol.
2010;
epub
24
Schuetz G M, Zacharopoulou N M, Schlattmann P. et al .
Meta-analysis: Noninvasive Coronary Angiography Using Computed Tomography versus Magnetic
Resonance Imaging.
Ann Intern Med.
2010;
152
167-177
25
Kovacs A, Probst C, Sommer T. et al .
CT coronary angiography in patients with atrial fibrillation.
Fortschr Röntgenstr.
2005;
177
1655-1662
26
Oncel D, Oncel G, Tastan A.
Effectiveness of dual-source CT coronary angiography for the evaluation of coronary
artery disease in patients with atrial fibrillation: initial experience.
Radiology.
2007;
245
703-711
27
Wolak A, Gutstein A, Cheng V Y. et al .
Dual-source coronary computed tomography angiography in patients with atrial fibrillation:
initial experience.
J Cardiovasc Comput Tomogr.
2008;
2
172-180
28
Yang L, Zhang Z, Fan Z. et al .
64-MDCT coronary angiography of patients with atrial fibrillation: influence of heart
rate on image quality and efficacy in evaluation of coronary artery disease.
Am J Roentgenol.
2009;
193
795-801
29
Chow B J, Larose E, Bilodeau S. et al .
The ”what, when, where, who and how?” of cardiac computed tomography in 2009: guidelines
for the clinician.
Can J Cardiol.
2009;
25
135-139
30
Bluemke D A, Achenbach S, Budoff M. et al .
Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector
computed tomography angiography: a scientific statement from the american heart association
committee on cardiovascular imaging and intervention of the council on cardiovascular
radiology and intervention, and the councils on clinical cardiology and cardiovascular
disease in the young.
Circulation.
2008;
118
586-606
31
Schroeder S, Achenbach S, Bengel F. et al .
Cardiac computed tomography: indications, applications, limitations, and training
requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology
and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear
Cardiology.
Eur Heart J.
2008;
29
531-556
32
Rybicki F J, Otero H J, Steigner M L. et al .
Initial evaluation of coronary images from 320-detector row computed tomography.
Int J Cardiovasc Imaging.
2008;
24
535-546
33
Dewey M, Zimmermann E, Deissenrieder F. et al .
Noninvasive Coronary Angiography by 320-Row CT with Lower Radiation Exposure and Maintained
Diagnostic Accuracy: Comparison of Results with Cardiac Catheterization in a Head-To-Head
Pilot Investigation.
Circulation.
2009;
120
867-875
34
Achenbach S, Marwan M, Ropers D. et al .
Coronary computed tomography angiography with a consistent dose below 1 mSv using
prospectively electrocardiogram-triggered high-pitch spiral acquisition.
Eur Heart J.
2010;
31
340-346
35
Steigner M L, Mitsouras D, Whimore A G. et al .
Iodinated Contrast Opacification Gradients in Normal Coronary Arteries Imaged with
Prospectively ECG-Gated Single Heart Beat 320-Detector Row Computed Tomography.
Circ Cardiovasc Imaging.
2010;
in press
36
Dewey M, Laule M, Krug L. et al .
Multisegment and halfscan reconstruction of 16-slice computed tomography for detection
of coronary artery stenoses.
Invest Radiol.
2004;
39
223-229
37
Dewey M, Teige F, Laule M. et al .
Influence of heart rate on diagnostic accuracy and image quality of 16-slice CT coronary
angiography: comparison of multisegment and halfscan reconstruction approaches.
Eur Radiol.
2007;
17
2829-2837
38
Flohr T, Stierstorfer K, Raupach R. et al .
Performance evaluation of a 64-slice CT system with z-flying focal spot.
Fortschr Röntgenstr.
2004;
176
1803-1810
39
Flohr T G, McCollough C H, Bruder H. et al .
First performance evaluation of a dual-source CT (DSCT) system.
Eur Radiol.
2006;
16
256-268
40
Halliburton S S, Stillman A E, Flohr T. et al .
Do segmented reconstruction algorithms for cardiac multi-slice computed tomography
improve image quality?.
Herz.
2003;
28
20-31
41
Engelken F, Lembcke A, Hamm B. et al .
Determining optimal acquisition parameters for computed tomography coronary angiography:
evaluation of a software-assisted, breathhold exam simulation.
Acad Radiol.
2008;
16
239-243
42
Min J K, Swaminathan R V, Vass M. et al .
High-definition multidetector computed tomography for evaluation of coronary artery
stents: comparison to standard-definition 64-detector row computed tomography.
J Cardiovasc Comput Tomogr.
2009;
3
246-251
43
Imai Y, Nukui M, Ishihara Y. et al .
Development and performance evaluation of an experimental fine pitch detector multislice
CT scanner.
Med Phys.
2009;
36
1120-1127
44
Flohr T G, Raupach R, Bruder H.
Cardiac CT: how much can temporal resolution, spatial resolution, and volume coverage
be improved?.
J Cardiovasc Comput Tomogr.
2009;
3
143-152
45
Zimmermann E, Germershausen C, Greupner J. et al .
Improvement of Skills and Knowledge by a Hands-on Cardiac CT Course: Before and After
Evaluation with a Validated Questionnaire and Self-Assessment.
Fortschr Röntgenstr.
2010;
DOI: 10.1055/s-0028-1109950
46 Dewey M. Technical and Personnel Requirements. Chapter 2. Dewey M Coronary CT Angiography
Heidelberg; Springer 2008
47
Hausleiter J, Meyer T, Hermann F. et al .
Estimated radiation dose associated with cardiac CT angiography.
JAMA.
2009;
301
500-507
48
Budoff M J, Dowe D, Jollis J G. et al .
Diagnostic performance of 64-multidetector row coronary computed tomographic angiography
for evaluation of coronary artery stenosis in individuals without known coronary artery
disease: results from the prospective multicenter ACCURACY (Assessment by Coronary
Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography)
trial.
J Am Coll Cardiol.
2008;
52
1724-1732
49
Gopal A, Budoff M J.
A new method to reduce radiation exposure during multi-row detector cardiac computed
tomographic angiography.
Int J Cardiol.
2009;
132
435-436
50
Dewey M, Hoffmann H, Hamm B.
Multislice CT coronary angiography: effect of sublingual nitroglycerine on the diameter
of coronary arteries.
Fortschr Röntgenstr.
2006;
178
600-604
51
Klass O, Mutlu S, Hohl K. et al .
Multidetector computed tomography coronary angiography: sublingual nitroglycerine
improves image quality significantly because of peripheral coronary vasodilatation.
J Comput Assist Tomogr.
2009;
33
199-203
52
Chun E J, Lee W, Choi Y H. et al .
Effects of nitroglycerin on the diagnostic accuracy of electrocardiogram-gated coronary
computed tomography angiography.
J Comput Assist Tomogr.
2008;
32
86-92
53 Lehmkuhl L. General Electric Light Speed VCT. Chapter 8 d. Dewey M Coronary CT
Angiography Heidelberg; Springer 2008
54 Dewey M. Preparation. Chapter 6. Dewey M Coronary CT Angiography Heidelberg; Springer
2008
55
Cademartiri F, Nieman K, Lugt van der A. et al .
Intravenous contrast material administration at 16-detector row helical CT coronary
angiography: test bolus versus bolus-tracking technique.
Radiology.
2004;
233
817-823
56
Koonce J, Schoepf J U, Nguyen S A. et al .
Extra-cardiac findings at cardiac CT: experience with 1,764 patients.
Eur Radiol.
2009;
19
570-576
57 Zimmermann E. Toshiba Aquilion 64. Chapter 8a. Dewey M Coronary CT Angiography
Heidelberg; Springer 2008
58 Klessen C. Siemens Somatom Sensation and Definition. Chapter 8b. Dewey M Coronary
CT Angiography Heidelberg; Springer 2008
59 Dewey M. Examination and Reconstruction. Chapter 7. Dewey M Coronary CT Angiography
Heidelberg; Springer 2008
60
Klink T, Hoffmann M H, Stevendaal van U. et al .
Automatic phase point determination of minimal motion reconstruction intervals with
motion maps in ECG-gated CT diagnostics of coronary sclerosis.
Fortschr Röntgenstr.
2009;
181
675-682
61
Hoffmann M H, Lessick J, Manzke R. et al .
Automatic determination of minimal cardiac motion phases for computed tomography imaging:
initial experience.
Eur Radiol.
2006;
16
365-373
62
Ruzsics B, Gebregziabher M, Lee H. et al .
Coronary CT angiography: automatic cardiac-phase selection for image reconstruction.
Eur Radiol.
2009;
19
1906-1913
PD Dr. Marc Dewey
Radiology, Charité
Charitéplatz 1
10117 Berlin
Telefon: + + 49/30/4 05 52 72 96
Fax: + + 49/30 74 05 52 79 96
eMail: dewey@charite.de