Subscribe to RSS
DOI: 10.1055/s-0029-1245250
© Georg Thieme Verlag KG Stuttgart · New York
Serotonin Kompakt – Teil 2[*]
Verhaltensgenetik und PsychopathologieSerotonin Now: Part 2Behavioral Genetics and PsychopathologyPublication History
Publication Date:
09 March 2010 (online)
Zusammenfassung
Ein dysfunktionales Serotonin-(5-HT-)System ist sowohl an einer veränderten emotionalen Reaktion als auch einer veränderten Stress-Antwort und damit an der Ätiologie und Pathogenese verschiedener neuropsychiatrischer Erkrankungen beteiligt. Dies wird sowohl durch verhaltenspharmakologische Experimente als auch genetische Studien belegt, wobei jedoch die Einflüsse unterschiedlicher Varianten in Genen, die dem serotonergen System zuzurechnen sind, kontrovers diskutiert werden. Die Untersuchung von Knockout-Mäusen, bei denen ganz gezielt gewebs- und entwicklungsspezifisch Gene des serotonergen Systems ausgeschaltet werden, unterstreicht die wichtige Bedeutung von 5-HT während der Entwicklung und insbesondere hinsichtlich der Entstehung emotionaler Verhaltensweisen. In diesem zweiten Teil des Übersichtsartikels werden neben den tierexperimentellen Studien genetische und pharmakologische Untersuchungen, gepaart mit klinischen Studien, zusammengefasst und kritisch diskutiert. Die Datenlage belegt die komplexen Funktionen von 5-HT, das im Zentrum zahlreicher neurobiologischer Vorgänge steht und weitreichende Implikationen für menschliches Verhalten aufweist. Epigenetische Regulationsmechanismen werden in den kommenden Jahren zunehmend erforscht werden und tragen zur Komplexität des serotonergen Systems bei. Nach wie vor steht daher das 5-HT-System im Mittelpunkt aktueller Hypothesen zur Pathogenese von Erkrankungen mit dem Kernsymptom emotionaler Dysregulation.
Abstract
Several lines of evidence implicate a dysregulation of the serotonin (5-HT) system in emotional behavior and stress, and point to its relevance for the etiology and pathogenesis of various neuropsychiatric disorders. This is evidenced by behavioral pharmacology as well as genetic studies, yet the impact of genetic variation within the 5-HT system on human disorders remains controversial. The generation of tissue-specific and inducible knockout mice lacking genes belonging to the 5-HT system further established the importance of the 5-HT system for neuronal development and the regulation of emotions. This part of the review provides a summary and critical discussion of genetic, neurobiological and pharmacological studies along with recent clinical research. Together, these data underscore the complex effects of 5-HT on human behavior and psychiatric disorders. Epigenetic mechanisms add to the complexity of the 5-HT system and will be increasingly studied in the coming years. Thus, the serotonergic system still remains in the centre of current hypotheses regarding the pathogenesis of disorders with the shared feature of emotional dysregulation.
Schlüsselwörter
Verhalten - Genetik - psychiatrische Erkrankungen - Depression - Tiermodelle
Keywords
behavior - genetic - psychiatric disorders - depression - animal models
1 Die dieser Arbeit zugrundeliegenden Untersuchungen wurden durch die DFG (GK-1156, an CK und KPL, RE1632/1-5 an AR, KFO 125 an AR und KPL; SFB 581 an AS und KPL, SFB TRR 58 an AR und KPL), das BMBF (IZKF Würzburg, 01KS9603, an KPL; IZKF N-27-N, an AR) und die EU (NEWMOOD LSHM-CT-2003-503474, an KPL) gefördert.
Literatur
- 1 Heisler L K, Chu H M, Brennan T J. et al . Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci USA. 1998; 95 15049-15054
- 2 Parks C L, Robinson P S, Sibille E. et al . Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA. 1998; 95 10734-10739
- 3 Ramboz S, Oosting R, Amara D A. et al . Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA. 1998; 95 14476-14481
- 4 Brunner D, Buhot M C, Hen R. et al . Anxiety, motor activation, and maternal-infant interactions in 5 HT1B knockout mice. Behav Neurosci. 1999; 113 587-601
- 5 Malleret G, Hen R, Guillou J L. et al . 5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced spatial memory performance in the Morris water maze. J Neurosci. 1999; 19 6157-6168
- 6 Ramboz S, Saudou F, Amara D A. et al . 5-HT1B receptor knock out – behavioral consequences. Behav Brain Res. 1996; 73 305-312
- 7 Saudou F, Amara D A, Dierich A. et al . Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science. 1994; 265 1875-1878
- 8 Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci. 2003; 4 1002-1012
- 9 Ding Y Q, Marklund U, Yuan W. et al . Lmx1b is essential for the development of serotonergic neurons. Nat Neurosci. 2003; 6 933-938
- 10 Ding Y Q, Yin J, Kania A. et al . Lmx1b controls the differentiation and migration of the superficial dorsal horn neurons of the spinal cord. Development. 2004; 131 3693-3703
- 11 Zhao Z Q, Scott M, Chiechio S. et al . Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J Neurosci. 2006; 26 12781-12788
- 12 Gutknecht L, Waider J, Kraft S. et al . Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice. J Neural Transm. 2008; 115 1127-1132
- 13 Cannon W A. Absorption of Oxygen by Roots When the Shoot Is in Darkness or in Light. Plant Physiol. 1932; 7 673-684
- 14 Cannon W B. Important Request. Cal State J Med. 1914; 12 302
- 15 Strohle A. The neuroendocrinology of stress and the pathophysiology and therapy of depression and anxiety. Nervenarzt. 2003; 74 279-291; quiz 292
- 16 Dagnino-Subiabre A, Orellana J A, Carmona-Fontaine C. et al . Chronic stress decreases the expression of sympathetic markers in the pineal gland and increases plasma melatonin concentration in rats. J Neurochem. 2006; 97 1279-1287
- 17 Nieuwenhuizen A G, Rutters F. The hypothalamic-pituitary-adrenal-axis in the regulation of energy balance. Physiol Behav. 2008; 94 169-177
- 18 Diaz-Marsa M, Carrasco J L, Basurte E. et al . Enhanced cortisol suppression in eating disorders with impulsive personality features. Psychiatry Res. 2008; 158 93-97
- 19 Junghanns K, Horbach R, Ehrenthal D. et al . Cortisol awakening response in abstinent alcohol-dependent patients as a marker of HPA-axis dysfunction. Psychoneuroendocrinology. 2007; 32 1133-1137
- 20 Wolfert A, Mehler P S. Osteoporosis: prevention and treatment in anorexia nervosa. Eat Weight Disord. 2002; 7 72-81
- 21 Deuschle M, Schweiger U, Weber B. et al . Diurnal activity and pulsatility of the hypothalamus-pituitary-adrenal system in male depressed patients and healthy controls. J Clin Endocrinol Metab. 1997; 82 234-238
- 22 Heuser I, Bissette G, Dettling M. et al . Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depress Anxiety. 1998; 8 71-79
- 23 Nemeroff C B, Bissette G, Akil H. et al . Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy. Corticotrophin-releasing factor, beta-endorphin and somatostatin. Br J Psychiatry. 1991; 158 59-63
- 24 Lesch K P, Lerer B. The 5-HT receptor – G-protein – effector system complex in depression. I. Effect of glucocorticoids. J Neural Transm Gen Sect. 1991; 84 3-18
- 25 Lesch K P, Mayer S, Disselkamp-Tietze J. et al . 5-HT1A receptor responsivity in unipolar depression. Evaluation of ipsapirone-induced ACTH and cortisol secretion in patients and controls. Biol Psychiatry. 1990; 28 620-628
- 26 Lesch K P. 5-HT1A receptor responsivity in anxiety disorders and depression. Prog Neuropsychopharmacol Biol Psychiatry. 1991; 15 723-733
- 27 Lesch K P, Merschdorf U. Impulsivity, aggression, and serotonin: a molecular psychobiological perspective. Behav Sci Law. 2000; 18 581-604
- 28 Staner L, Mendlewicz J. [Heredity and role of serotonin in aggressive impulsive behavior]. Encephale. 1998; 24 355-364
- 29 Bunney W E Jr, Davis J M. Norepinephrine in depressive reactions. A review. Arch Gen Psychiatry. 1965; 13 483-494
- 30 Schildkraut J J. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965; 122 509-522
- 31 Coppen A. The biochemistry of affective disorders. Br J Psychiatry. 1967; 113 1237-1264
- 32 Scherman D, Henry J P. Reserpine binding to bovine chromaffin granule membranes. Characterization and comparison with dihydrotetrabenazine binding. Mol Pharmacol. 1984; 25 113-122
- 33 Maas J W. Biogenic amines and depression. Biochemical and pharmacological separation of two types of depression. Arch Gen Psychiatry. 1975; 32 1357-1361
- 34 Parker G. Through a glass darkly: the disutility of the DSM nosology of depressive disorders. Can J Psychiatry. 2006; 51 879-886
- 35 Delgado P L, Charney D S, Price L H. et al . Serotonin function and the mechanism of antidepressant action. Reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Arch Gen Psychiatry. 1990; 47 411-418
- 36 Meltzer H Y. Role of serotonin in depression. Ann N Y Acad Sci. 1990; 600 486-499; discussion 499 – 500
- 37 Arranz B, Blennow K, Eriksson A. et al . Serotonergic, noradrenergic, and dopaminergic measures in suicide brains. Biol Psychiatry. 1997; 41 1000-1009
- 38 Stanley M, Mann J J, Cohen L S. Role of the serotonergic system in the postmortem analysis of suicide. Psychopharmacol Bull. 1986; 22 735-740
- 39 Mendels J, Frazer A. Reduced central serotonergic activity in mania: implications for the relationship between depression and mania. Br J Psychiatry. 1975; 126 241-248
- 40 Sambeth A, Riedel W J, Tillie D E. et al . Memory impairments in humans after acute tryptophan depletion using a novel gelatin-based protein drink. J Psychopharmacol. 2009; 23 56-64
- 41 Van der Does A J. The effects of tryptophan depletion on mood and psychiatric symptoms. J Affect Disord. 2001; 64 107-119
- 42 Young S N, Smith S E, Pihl R O. et al . Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology (Berl). 1985; 87 173-177
- 43 Bach-Mizrachi H, Underwood M D, Kassir S A. et al . Neuronal tryptophan hydroxylase mRNA expression in the human dorsal and median raphe nuclei: major depression and suicide. Neuropsychopharmacology. 2006; 31 814-824
- 44 De Luca V, Likhodi O, Van Tol H H. et al . Gene expression of tryptophan hydroxylase 2 in post-mortem brain of suicide subjects. Int J Neuropsychopharmacol. 2006; 9 21-25
- 45 Lesch K P, Schmitt A. Antidepressants and gene expression profiling: how to SNARE novel drug targets. Pharmacogenomics J. 2002; 2 346-348
- 46 Li Q, Wichems C, Heils A. et al . Reduction of 5-hydroxytryptamine (5-HT)(1A)-mediated temperature and neuroendocrine responses and 5-HT(1A) binding sites in 5-HT transporter knockout mice. J Pharmacol Exp Ther. 1999; 291 999-1007
- 47 Lesch K P, Aulakh C S, Wolozin B L. et al . Regional brain expression of serotonin transporter mRNA and its regulation by reuptake inhibiting antidepressants. Brain Res Mol Brain Res. 1993; 17 31-35
- 48 Benmansour S, Owens W A, Cecchi M. et al . Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci. 2002; 22 6766-6772
- 49 Calcagno E, Canetta A, Guzzetti S. et al . Strain differences in basal and post-citalopram extracellular 5-HT in the mouse medial prefrontal cortex and dorsal hippocampus: relation with tryptophan hydroxylase-2 activity. J Neurochem. 2007; 103 1111-1120
- 50 Cervo L, Canetta A, Calcagno E. et al . Genotype-dependent activity of tryptophan hydroxylase-2 determines the response to citalopram in a mouse model of depression. J Neurosci. 2005; 25 8165-8172
- 51 Invernizzi R W. Role of TPH-2 in brain function: news from behavioral and pharmacologic studies. J Neurosci Res. 2007; 85 3030-3035
- 52 Mongeau R, Blier P, Montigny de C. The serotonergic and noradrenergic systems of the hippocampus: their interactions and the effects of antidepressant treatments. Brain Res Brain Res Rev. 1997; 23 145-195
- 53 Wagner G J, Rabkin J G, Rabkin R. Dextroamphetamine as a treatment for depression and low energy in AIDS patients: a pilot study. J Psychosom Res. 1997; 42 407-411
- 54 Wagner G J, Rabkin R. Effects of dextroamphetamine on depression and fatigue in men with HIV: a double-blind, placebo-controlled trial. J Clin Psychiatry. 2000; 61 436-440
- 55 Freitag C M, Domschke K, Rothe C. et al . Interaction of serotonergic and noradrenergic gene variants in panic disorder. Psychiatr Genet. 2006; 16 59-65
- 56 Szabo S T, Blier P. Serotonin (1A) receptor ligands act on norepinephrine neuron firing through excitatory amino acid and GABA(A) receptors: a microiontophoretic study in the rat locus coeruleus. Synapse. 2001; 42 203-212
- 57 Bradley C C, Blakely R D. Alternative splicing of the human serotonin transporter gene. J Neurochem. 1997; 69 1356-1367
- 58 Lesch K P, Balling U, Gross J. et al . Organization of the human serotonin transporter gene. J Neural Transm Gen Sect. 1994; 95 157-162
- 59 Battersby S, Ogilvie A D, Blackwood D H. et al . Presence of multiple functional polyadenylation signals and a single nucleotide polymorphism in the 3’ untranslated region of the human serotonin transporter gene. J Neurochem. 1999; 72 1384-1388
- 60 Lesch K P, Bengel D, Heils A. et al . Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996; 274 1527-1531
- 61 Lesch K P, Heils A. Serotonergic gene transcriptional control regions: targets for antidepressant drug development?. Int J Neuropsychopharmacol. 2000; 3 67-79
- 62 Reif A, Rosler M, Freitag C M. et al . Nature and nurture predispose to violent behavior: serotonergic genes and adverse childhood environment. Neuropsychopharmacology. 2007; 32 2375-2383
- 63 Canli T, Lesch K P. Long story short: the serotonin transporter in emotion regulation and social cognition. Nat Neurosci. 2007; 10 1103-1109
- 64 Caspi A, McClay J, Moffitt T E. et al . Role of genotype in the cycle of violence in maltreated children. Science. 2002; 297 851-854
- 65 Munafo M R, Brown S M, Hariri A R. Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biol Psychiatry. 2008; 63 852-857
- 66 Risch N, Herrell R, Lehner T. et al . Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA. 2009; 301 2462-2471
- 67 Uher R, McGuffin P. The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: review and methodological analysis. Mol Psychiatry. 2008; 13 131-146
- 68 Hettema J M, Neale M C, Kendler K S. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry. 2001; 158 1568-1578
- 69 Bremner J D, Krystal J H, Southwick S M. et al . Noradrenergic mechanisms in stress and anxiety: II. Clinical studies. Synapse. 1996; 23 39-51
- 70 Deckert J, Catalano M, Syagailo Y V. et al . Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet. 1999; 8 621-624
- 71 Domschke K, Deckert J, O’Donovan M C. et al . Meta-analysis of COMT val158met in panic disorder: ethnic heterogeneity and gender specificity. Am J Med Genet B Neuropsychiatr Genet. 2007; 144B 667-673
- 72 Lesch K P, Wiesmann M, Hoh A. et al . 5-HT1A receptor-effector system responsivity in panic disorder. Psychopharmacology (Berl). 1992; 106 111-117
- 73 Neumeister A, Bain E, Nugent A C. et al . Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci. 2004; 24 589-591
- 74 Stahl S M. Antidepressants: the blue-chip psychotropic for the modern treatment of anxiety disorders. J Clin Psychiatry. 1999; 60 356-357
- 75 Lesch K P, Mossner R. Knockout Corner: 5-HT(1A) receptor inactivation: anxiety or depression as a murine experience. Int J Neuropsychopharmacol. 1999; 2 327-331
- 76 He M, Sibille E, Benjamin D. et al . Differential effects of 5-HT1A receptor deletion upon basal and fluoxetine-evoked 5-HT concentrations as revealed by in vivo microdialysis. Brain Res. 2001; 902 11-17
- 77 Richer M, Hen R, Blier P. Modification of serotonin neuron properties in mice lacking 5-HT1A receptors. Eur J Pharmacol. 2002; 435 195-203
- 78 Gross C, Zhuang X, Stark K. et al . Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature. 2002; 416 396-400
- 79 Zohar J, Chopra M, Sasson Y. et al . Obsessive compulsive disorder: serotonin and beyond. World J Biol Psychiatry. 2000; 1 92-100
- 80 Delorme R, Betancur C, Callebert J. et al . Platelet serotonergic markers as endophenotypes for obsessive-compulsive disorder. Neuropsychopharmacology. 2005; 30 1539-1547
- 81 Hasselbalch S G, Hansen E S, Jakobsen T B. et al . Reduced midbrain-pons serotonin transporter binding in patients with obsessive-compulsive disorder. Acta Psychiatr Scand. 2007; 115 388-394
- 82 Mossner R, Walitza S, Geller F. et al . Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in children and adolescents with obsessive-compulsive disorder. Int J Neuropsychopharmacol. 2006; 9 437-442
- 83 Evenden J L. Varieties of impulsivity. Psychopharmacology (Berl). 1999; 146 348-361
- 84 Vitiello B, Stoff D M. Subtypes of aggression and their relevance to child psychiatry. J Am Acad Child Adolesc Psychiatry. 1997; 36 307-315
- 85 Baumgarten H G, Grozdanovic Z. Psychopharmacology of central serotonergic systems. Pharmacopsychiatry. 1995; 28 Suppl 2 73-79
- 86 Baumgarten H G, Grozdanovic Z. [The role of serotonin in behavior modulation]. Fortschr Neurol Psychiatr. 1995; 63 Suppl 1 3-8
- 87 Kulikov A V, Osipova D V, Naumenko V S. et al . Association between Tph2 gene polymorphism, brain tryptophan hydroxylase activity and aggressiveness in mouse strains. Genes Brain Behav. 2005; 4 482-485
- 88 Popova N K, Voitenko N N, Kulikov A V. et al . Evidence for the involvement of central serotonin in mechanism of domestication of silver foxes. Pharmacol Biochem Behav. 1991; 40 751-756
- 89 Evrard A, Malagie I, Laporte A M. et al . Altered regulation of the 5-HT system in the brain of MAO-A knock-out mice. Eur J Neurosci. 2002; 15 841-851
- 90 Brunner H G, Nelen M, Breakefield X O. et al . Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science. 1993; 262 578-580
- 91 Nilsson K W, Sjoberg R L, Wargelius H L. et al . The monoamine oxidase A (MAO-A) gene, family function and maltreatment as predictors of destructive behaviour during male adolescent alcohol consumption. Addiction. 2007; 102 389-398
- 92 Lappalainen J, Long J C, Eggert M. et al . Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch Gen Psychiatry. 1998; 55 989-994
- 93 Miczek K A, Fish E W, De Bold J F. et al . Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology (Berl). 2002; 163 434-458
- 94 Spivak B, Vered Y, Yoran-Hegesh R. et al . Circulatory levels of catecholamines, serotonin and lipids in attention deficit hyperactivity disorder. Acta Psychiatr Scand. 1999; 99 300-304
- 95 Walitza S, Renner T J, Dempfle A. et al . Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in attention-deficit/hyperactivity disorder. Mol Psychiatry. 2005; 10 1126-1132
- 96 Winstanley C A, Theobald D E, Dalley J W. et al . 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology (Berl). 2004; 176 376-385
- 97 Cleare A J, Bond A J. Ipsapirone challenge in aggressive men shows an inverse correlation between 5-HT1A receptor function and aggression. Psychopharmacology (Berl). 2000; 148 344-349
- 98 Popova N K. From genes to aggressive behavior: the role of serotonergic system. Bioessays. 2006; 28 495-503
- 99 Crean J, Richards J B, Wit de H. Effect of tryptophan depletion on impulsive behavior in men with or without a family history of alcoholism. Behav Brain Res. 2002; 136 349-357
- 100 Walderhaug E, Landro N I, Magnusson A. A synergic effect between lowered serotonin and novel situations on impulsivity measured by CPT. J Clin Exp Neuropsychol. 2008; 30 204-211
- 101 Moeller F G, Dougherty D M, Swann A C. et al . Tryptophan depletion and aggressive responding in healthy males. Psychopharmacology (Berl). 1996; 126 97-103
- 102 Constantino J N, Morris J A, Murphy D L. CSF 5-HIAA and family history of antisocial personality disorder in newborns. Am J Psychiatry. 1997; 154 1771-1773
- 103 Goodman D W. The consequences of attention-deficit/hyperactivity disorder in adults. J Psychiatr Pract. 2007; 13 318-327
- 104 Lesch K P. Alcohol dependence and gene × environment interaction in emotion regulation: Is serotonin the link?. Eur J Pharmacol. 2005; 526 113-124
- 105 Piazza P V, Rouge-Pont F, Deminiere J M. et al . Dopaminergic activity is reduced in the prefrontal cortex and increased in the nucleus accumbens of rats predisposed to develop amphetamine self-administration. Brain Res. 1991; 567 169-174
- 106 Murphy D L, Uhl G R, Holmes A. et al . Experimental gene interaction studies with SERT mutant mice as models for human polygenic and epistatic traits and disorders. Genes Brain Behav. 2003; 2 350-364
- 107 Sora I, Hall F S, Andrews A M. et al . Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc Natl Acad Sci USA. 2001; 98 5300-5305
- 108 Miller G M, Yatin S M, De La Garza R. et al . Cloning of dopamine, norepinephrine and serotonin transporters from monkey brain: relevance to cocaine sensitivity. Brain Res Mol Brain Res. 2001; 87 124-143
- 109 Nichols D E. Hallucinogens. Pharmacol Ther. 2004; 101 131-181
- 110 Belleville R E, Fraser H F, Isbell H. et al . Studies on lysergic acid diethylamide (LSD-25). I. Effects in former morphine addicts and development of tolerance during chronic intoxication. AMA Arch Neurol Psychiatry. 1956; 76 468-478
- 111 Cholden L S, Kurland A, Savage C. Clinical reactions and tolerance to LSD in chronic schizophrenia. J Nerv Ment Dis. 1955; 122 211-221
- 112 Buckholtz N S, Zhou D F, Freedman D X. et al . Lysergic acid diethylamide (LSD) administration selectively downregulates serotonin2 receptors in rat brain. Neuropsychopharmacology. 1990; 3 137-148
- 113 Kennett G A, Wood M D, Glen A. et al . In vivo properties of SB 200646A, a 5-HT2C/ 2B receptor antagonist. Br J Pharmacol. 1994; 111 797-802
- 114 Heinz A, Knable M B, Weinberger D R. Dopamine D 2 receptor imaging and neuroleptic drug response. J Clin Psychiatry. 1996; 57 (Suppl 11) 84-88; discussion 89 – 93
- 115 Barnes N M, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999; 38 1083-1152
- 116 Huether G, Zhou D, Ruther E. Causes and consequences of the loss of serotonergic presynapses elicited by the consumption of 3,4-methylenedioxymethamphetamine (MDMA, ”ecstasy”) and its congeners. J Neural Transm. 1997; 104 771-794
- 117 Thomasius R, Zapletalova P, Petersen K. et al . Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users: the longitudinal perspective. J Psychopharmacol. 2006; 20 211-225
- 118 Buchert R, Thomasius R, Wilke F. et al . A voxel-based PET investigation of the long-term effects of ”Ecstasy” consumption on brain serotonin transporters. Am J Psychiatry. 2004; 161 1181-1189
- 119 Callahan B T, Cord B J, Ricaurte G A. Long-term impairment of anterograde axonal transport along fiber projections originating in the rostral raphe nuclei after treatment with fenfluramine or methylenedioxymethamphetamine. Synapse. 2001; 40 113-121
- 120 Molliver M E, Berger U V, Mamounas L A. et al . Neurotoxicity of MDMA and related compounds: anatomic studies. Ann N Y Acad Sci. 1990; 600 649-661
- 121 Montgomery C, Fisk J E. Ecstasy-related deficits in the updating component of executive processes. Hum Psychopharmacol. 2008; 23 495-511
- 122 Morgan M J. Memory deficits associated with recreational use of „ecstasy” (MDMA). Psychopharmacology (Berl). 1999; 141 30-36
- 123 Verdejo-Garcia A J, Lopez-Torrecillas F, Aguilar de Arcos F. et al . Differential effects of MDMA, cocaine, and cannabis use severity on distinctive components of the executive functions in polysubstance users: a multiple regression analysis. Addict Behav. 2005; 30 89-101
- 124 Skelton M R, Williams M T, Vorhees C V. Developmental effects of 3,4-methylenedioxymethamphetamine: a review. Behav Pharmacol. 2008; 19 91-111
1 Die dieser Arbeit zugrundeliegenden Untersuchungen wurden durch die DFG (GK-1156, an CK und KPL, RE1632/1-5 an AR, KFO 125 an AR und KPL; SFB 581 an AS und KPL, SFB TRR 58 an AR und KPL), das BMBF (IZKF Würzburg, 01KS9603, an KPL; IZKF N-27-N, an AR) und die EU (NEWMOOD LSHM-CT-2003-503474, an KPL) gefördert.
Claudia Kriegebaum
Klinik für Psychiatrie, Psychosomatik und Psychotherapie Universität Würzburg
Füchsleinstr. 15
97080 Würzburg
Email: claudia.kriegebaum@web.de