Subscribe to RSS
DOI: 10.1055/s-0029-1245503
© Georg Thieme Verlag KG Stuttgart · New York
Comparison of a Multi-Breath-Hold and a Single Breath-Hold Cine Imaging Approach for 4D Guide-Point Modeling of the Left Ventricle
Vergleich eines mehrfach atemangehaltenen mit einem einfach atemangehaltenen Cine-Bildgebungskonzepts für die 4-D-Modellierung des linken Ventrikels mittels FührungspunktenPublication History
received: 27.1.2010
accepted: 1.5.2010
Publication Date:
18 June 2010 (online)
Zusammenfassung
Ziel: Die Modellierung des linken Ventrikels mittels Führungspunkten (GPM) ist ein zuverlässiges und zeiteffizientes Verfahren zur Bestimmung linksventrikulärer (LV) Volumina, wenn Sequenzen verwendet werden, die die Akquisition von Kurz- und Langachsenschnitten in einem Atemanhalten erlauben. Ein Schichtversatz zwischen Schichten, die in mehreren Atemstillständen aufgenommen wurden, beeinträchtigt eventuell die GPM-Analyse. Ziel unserer Studie war zu untersuchen, ob mittels eines solchen Ansatzes trotzdem eine zuverlässige Bestimmung der LV-Volumina möglich ist. Material und Methoden: 52 Patienten wurden an einem 1,5 T-Scanner mit einer Standard-SSFP-Sequenz (TR 3 ms, TE 1,5 ms, FA 60°) in Lang- und Kurzachsenblicken und mit einer TPAT-beschleunigten SSFP-Sequenz (TR 4,6 ms, TE 1,1 ms, FA 60°, Beschleunigungsfaktor 3) untersucht, die den linken Ventrikel in 3 Kurz- und 2 Langachsenschnitten in einem Atemanhalten erfasst. Beide Datensätze wurden mittels GPM ausgewertet. Zusätzlich wurden die LV-Parameter durch die Standard-Schichtensummations(SoS)-Methode unter Verwendung zusammenhängender Kurzachsenschnitte bestimmt. Ergebnisse: Die Auswertung mit beiden GPM-Ansätzen war deutlich schneller verglichen zum SoS-Ansatz (beides Mal p < 0,001). Es konnten keine signifikanten Unterschiede in der Bestimmung der Ejektionsfraktion mit den 3 Methoden festgestellt werden, jedoch ergaben sich höhere Werte beim enddiastolischen, endsystolischen und Schlagvolumen, wenn GPM verwendet wurde. Alle mit den GPM-Ansätzen bestimmten Parameter zeigten eine exzellente Übereinstimmung (r > 0,97). Schlussfolgerung: Auch Standard-Kurz- und Langachsenschnitte, die in mehrmaligem Atemanhalten gewonnen wurden, können zuverlässig mittels GPM ausgewertet werden.
Abstract
Purpose: Guide-point modeling (GPM) enables reliable and time-efficient assessment of left ventricular (LV) volumes when using sequences that allow acquisition of short- and long-axis scans within a single breath-hold. Slice misalignment may influence GPM analysis of standard multi-breath-hold images due to image acquisition in different breath-holds. Thus, our study aimed to assess if such an approach allows for reliable volumetric calculations in the clinical routine. Materials and Methods: 52 patients were examined on a 1.5 T scanner with multi-breath-hold acquisitions on the standard short- and long-axis using an SSFP (TR 3 ms, TE 1.5 ms, FA 60°) sequence and a TPAT accelerated SSFP (TR 4.6 msec, TE 1.1msec, FA 60°, acceleration factor 3) sequence that covered the LV in 3 short- and 2 long-axis slices within a single breath-hold. For both datasets GPM was used to assess LV volumes. In addition, LV parameters were calculated by applying the summation of slices (SoS) approach (standard of reference) with the short-axis views of the multi-breath-hold dataset. Results: The post-processing times were shorter with both GPM approaches (both, p < 0.001). No significant difference between the 3 methods for the calculation of the ejection fraction was observed. However, end-diastolic, end-systolic and stroke volumes yielded higher results than the standard of reference if the GPM technique was employed. Excellent correlations were observed for all volumetric parameters derived from both GPM evaluations (all r > 0.97). Conclusion: Cine short- and long-axis images that had been acquired in different breath-holds can be reliably evaluated by the GPM approach.
Key words
cardiac MRI - left ventricular function - volumetry
References
- 1 Hammermeister K E, DeRouen T A, Dodge H T. Variables predictive of survival in patients with coronary disease. Selection by univariate and multivariate analyses from the clinical, electrocardiographic, exercise, arteriographic, and quantitative angiographic evaluations. Circulation. 1979; 59 421-430
- 2 White H D, Norris R M, Brown M A et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987; 76 44-51
- 3 Juilliere Y, Barbier G, Feldmann L et al. Additional predictive value of both left and right ventricular ejection fractions on long-term survival in idiopathic dilated cardiomyopathy. Eur Heart J. 1997; 18 276-280
- 4 Debatin J F, Nadel S N, Paolini J F et al. Cardiac ejection fraction: phantom study comparing cine MR imaging, radionuclide blood pool imaging, and ventriculography. J Magn Reson Imaging. 1992; 2 135-142
- 5 Bellenger N G, Marcus N J, Davies C et al. Left ventricular function and mass after orthotopic heart transplantation: a comparison of cardiovascular magnetic resonance with echocardiography. J Heart Lung Transplant. 2000; 19 444-452
- 6 Gutberlet M, Abdul-Khaliq H, Grothoff M et al. Evaluation of left ventricular volumes in patients with congenital heart disease and abnormal left ventricular geometry. Comparison of MRI and transthoracic 3-dimensional echocardiography. Fortschr Röntgenstr. 2003; 175 942-951
- 7 Alfakih K, Reid S, Jones T et al. Assessment of ventricular function and mass by cardiac magnetic resonance imaging. Eur Radiol. 2004; 14 1813-1822
- 8 Pennell D J, Sechtem U P, Higgins C B et al. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. J Cardiovasc Magn Reson. 2004; 6 727-765
- 9 Lyne J C, Pennell D J. Cardiovascular magnetic resonance in the quantitative assessment of left ventricular mass, volumes and contractile function. Coron Artery Dis. 2005; 16 337-343
- 10 Nassenstein K, Bruder O, Breuckmann F et al. Prevalence, pattern, and functional impact of late gadolinium enhancement in left ventricular hypertrophy due to aortic valve stenosis. Fortschr Röntgenstr. 2009; 181 472-476
- 11 Lotz J, Kivelitz D, Fischbach R et al. Recommendations for utilizing computerized tomography and magnetic resonance tomography in heart diagnosis. 2-Magnetic resonance tomography. Fortschr Röntgenstr. 2009; 181 800-814
- 12 Lüders F, Fischbach R, Seifarth H et al. Dual-source computed tomography: effect on regional and global left ventricular function assessment compared to magnetic resonance imaging. Fortschr Röntgenstr. 2009; 181 962-969
- 13 Young A A, Cowan B R, Thrupp S F et al. Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. Radiology. 2000; 216 597-602
- 14 Heilmaier C, Nassenstein K, Nielles-Vallespin S et al. Assessment of left ventricular function with single breath-hold highly accelerated cine MRI combined with guide-point modeling. Eur J Radiol. 2009; 74 492-499
- 15 Eberle H C, Nassenstein K, Jensen C J et al. Rapid MR assessment of left ventricular systolic function after acute myocardial infarction using single breath-hold cine imaging with the temporal parallel acquisition technique (TPAT) and 4D guide-point modelling analysis of left ventricular function. Eur Radiol. 2010; 20 73-80
- 16 Young A A, Cowan B R, Schoenberg S O et al. Feasibility of single breath-hold left ventricular function with 3 Tesla TSENSE acquisition and 3D modeling analysis. J Cardiovasc Magn Reson. 2008; 10 24
- 17 Barkhausen J, Ruehm S G, Goyen M et al. MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology. 2001; 219 264-269
- 18 Karamitsos T D, Hudsmith L E, Selvanayagam J B et al. Operator induced variability in left ventricular measurements with cardiovascular magnetic resonance is improved after training. J Cardiovasc Magn Reson. 2007; 9 777-783
- 19 Bland J M, Altman D G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 1 307-310
- 20 Wintersperger B J, Reeder S B, Nikolaou K et al. Cardiac CINE MR imaging with a 32-channel cardiac coil and parallel imaging: impact of acceleration factors on image quality and volumetric accuracy. J Magn Reson Imaging. 2006; 23 222-227
- 21 Gutberlet M, Schwinge K, Freyhardt P et al. Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2D CINE magnetic resonance imaging: comparison of 1.5T vs. 3.0T. Eur Radiol. 2005; 15 1586-1597
- 22 Wintersperger B J, Bauner K, Reeder S B et al. Cardiac steady-state free precession CINE magnetic resonance imaging at 3.0 tesla: impact of parallel imaging acceleration on volumetric accuracy and signal parameters. Invest Radiol. 2006; 41 141-147
- 23 Miller S, Simonetti O P, Carr J et al. MR Imaging of the heart with cine true fast imaging with steady-state precession: influence of spatial and temporal resolutions on left ventricular functional parameters. Radiology. 2002; 223 263-269
- 24 Krenning B J, Voormolen M M, Geuns R J et al. Rapid and accurate measurement of left ventricular function with a new second-harmonic fast-rotating transducer and semi-automated border detection. Echocardiography. 2006; 23 447-454
- 25 Geuns van R J, Baks van T, Gronenschild E H et al. Automatic quantitative left ventricular analysis of cine MR images by using three-dimensional information for contour detection. Radiology. 2006; 240 215-221
- 26 Chandler A G, Pinder R J, Netsch T et al. Correction of misaligned slices in multi-slice cardiovascular magnetic resonance using slice-to-volume registration. J Cardiovasc Magn Reson. 2008; 10 13
- 27 Rominger M B, Bachmann G F, Geuer M et al. Accuracy of right and left ventricular heart volume and left ventricular muscle mass determination with cine MRI in breath holding technique. Fortschr Röntgenstr. 1999; 170 54-60
- 28 Miller S, Hahn U, Bail D M et al. Cardiac MRI for determining functional left ventricular parameters. Fortschr Röntgenstr. 1999; 170 47-53
- 29 Bellenger N G, Francis J M, Davies C L et al. Establishment and performance of a magnetic resonance cardiac function clinic. J Cardiovasc Magn Reson. 2000; 2 15-22
- 30 Moon J C, Lorenz C H, Francis J M et al. Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology. 2002; 223 789-797
Dr. Christina Heilmaier
Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen
Hufelandstraße 55
45122 Essen
Germany
Phone: ++ 49/2 01/7 23 15 01
Fax: ++ 49/2 01/7 23 15 48
Email: christina.heilmaier@uni-due.de