Subscribe to RSS
DOI: 10.1055/s-0029-1245597
© Georg Thieme Verlag KG Stuttgart · New York
T2’ Imaging of Native Kidneys and Renal Allografts – a Feasibility Study
T2’-Bildgebung von nativen und transplantierten Nieren – eine MachbarkeitsstudiePublication History
received: 8.3.2010
accepted: 30.6.2010
Publication Date:
19 August 2010 (online)
Zusammenfassung
Ziel: Evaluation der Durchführbarkeit der T 2’-Bildgebung von nativen und transplantierten Nieren. Material und Methoden: Nach positivem Votum der lokalen Ethikkommission wurden 24 nierentransplantierte Patienten und 10 gesunde Freiwillige als Kontrollen in die Studie eingeschlossen. An einem 1,5 Tesla MR-Tomografen wurden T 2- und T 2*-Multiecho-Sequenzen angefertigt. Die Patienten wurden 2 Gruppen zugeordnet: Gruppe a), 8 Patienten mit guter (glomeruläre Filtrationsrate [GFR] über 40 ml/min) Transplantatfunktion und fehlenden Zeichen einer Abstoßungsreaktion oder einer Harnleiter-Obstruktion; Guppe b), 16 Patienten mit reduzierter Transplantatfunktion (glomeruläre Filtrationsrate (GFR) von 40 ml/min oder weniger). 2 verschiedene Bildgebungsprotokolle wurden getestet. Ergebnisse: Die mittleren T 2’-Relaxationszeiten der Gruppen a), b) und der gesunden Probanden waren jeweils 108,33 ms ± 13,34, 100,00 ms ± 1889 and 124,57 ms ± 651. Die Verringerung der T 2’-Werte in Gruppe b) war nicht statistisch signifikant. Es zeigten sich jedoch signifikante Korrelationen zwischen den T 2’-Werten und der glomerulären Filtrationsrate (GFR). Die Analyse der Reproduzierbarkeit ergab Variationskoeffizienten von 11,1 % (intraindividuell) und 11,3 % (interindividuell). Schlussfolgerung: Die Studienergebnisse weisen darauf hin, dass es sich bei der T 2’-Bildgebung um eine vielversprechende, kontrastmittelfreie Technik handelt, welche scheinbar Informationen über die Transplantatfunktion vorhält. Weitere Studien sind erforderlich, um die klinische Wertigkeit des Verfahrens für das Monitoring nierentransplantierter Patienten zu erforschen.
Abstract
Purpose: To evaluate the feasibility of T 2’ mapping in native kidneys and renal allografts. Materials and Methods: Following approval of the local ethics committee, 24 renal allograft recipients and 10 control subjects (healthy volunteers) were included in this study. Multi-echo T 2 and T 2* imaging was performed on a 1.5 Tesla scanner. Allograft recipients were assigned to two groups: group a), 8 patients with good (glomerular filtration rate of more than 40 ml/min) allograft function and no evidence of transplant rejection, transplant renal artery stenosis or ureteral obstruction; group b), 16 patients with deterioration of renal graft function (glomerular filtration rate (GFR) of 40 ml/min or less). Two different imaging protocols were tested. Results: The mean T 2’ relaxation parameters were 108.33 msec ± 13.34, 100.00 msec ± 18.89 and 124.57 msec ± 6.51 for groups a), b) and for control subjects, respectively. The reduction of T 2’ values in patient group b) was not statistically significant. However, significant correlations could be demonstrated between T 2’ values and the glomerular filtration rate (GFR) of renal allograft function. The reproducibility was tested and the coefficients of variation of T 2’ values in the cortex of transplanted kidneys were 11.1 % within subjects and 11.3 % between subjects. Conclusion: Our results indicate that T 2’ imaging is a promising non-enhanced technique, which seems to reveal information on transplant function. Further studies are required to determine the clinical value of T 2’ mapping for monitoring renal allograft recipients.
Key words
transplantation - kidney - BOLD - non-contrast-enhanced MRI - susceptibility - MR functional imaging
References
- 1 Leichtman A B, Cohen D, Keith D et al. Kidney and pancreas transplantation in the United States, 1997 – 2006: the HRSA Breakthrough Collaboratives and the 58 DSA Challenge. Am J Transplant. 2008; 8 946-957
- 2 Baxter G M. Ultrasound of renal transplantation. Clin Radiol. 2001; 56 802-818
- 3 Lanzman R S, Voiculescu A, Walther C et al. ECG-gated nonenhanced 3D steady-state free precession MR angiography in assessment of transplant renal arteries: comparison with DSA. Radiology. 2009; 252 914-921
- 4 Blondin D, Koester A, Andersen K et al. Renal transplant failure due to urologic complications: Comparison of static fluid with contrast-enhanced magnetic resonance urography. Eur J Radiol. 2009; 69 324-330
- 5 Beckmann N, Joergensen J, Bruttel K et al. Magnetic resonance imaging for the evaluation of rejection of a kidney allograft in the rat. Transpl Int. 1996; 9 175-183
- 6 Schuurman H J, Beckmann N, Briner U et al. Magnetic resonance imaging in assessment of rejection of a kidney allograft in the rat: effect of the somatostatin analogue SMS 201 – 995. Transplant Proc. 1996; 28 3272-3275
- 7 Preidler K W, Szolar D, Schreyer H et al. Differentiation of delayed kidney graft function with gadolinium-DTPA-enhanced magnetic resonance imaging and Doppler ultrasound. Invest Radiol. 1996; 31 364-371
- 8 Szolar D H, Preidler K, Ebner F et al. Functional magnetic resonance imaging of human renal allografts during the post-transplant period: preliminary observations. Magn Reson Imaging. 1997; 15 727-735
- 9 Heinrich M, Uder M. Nephrogene systemische Fibrose nach Anwendung gadoliniumhaltiger Kontrastmittel – ein Statuspapier zum aktuellen Stand des Wissens. Fortschr Röntgenstr. 2007; 179 613-617
- 10 Sadowski E A, Bennett L K, Chan M R et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007; 243 148-157
- 11 Lanzman R S, Wittsack H J, Martirosian P et al. Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radiol. 2009; 20 1485-1491
- 12 Sadowski E A, Fain S B, Alford S K et al. Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. Radiology. 2005; 236 911-919
- 13 Thoeny H C, Zumstein D, Simon-Zoula S et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology. 2006; 241 812-821
- 14 Blondin D, Lanzman R S, Mathys C et al. Funktionelle MRT der Transplantatnieren: klinische Wertigkeit der Diffusionsbildgebung. Fortschr Röntgenstr. 2009; 181 1162-1167
- 15 Prasad P V, Edelman R R, Epstein F H. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation. 1996; 94 3271-3275
- 16 Li L P, Storey P, Pierchala L et al. Evaluation of the reproducibility of intrarenal R 2* and DeltaR2* measurements following administration of furosemide and during waterload. J Magn Reson Imaging. 2004; 19 610-616
- 17 Prasad P V, Chen Q, Goldfarb J W et al. Breath-hold R 2* mapping with a multiple gradient-recalled echo sequence: application to the evaluation of intrarenal oxygenation. J Magn Reson Imaging. 1997; 7 1163-1165
- 18 Malvezzi P, Bricault I, Terrier N et al. Evaluation of intrarenal oxygenation by blood oxygen level-dependent magnetic resonance imaging in living kidney donors and their recipients: preliminary results. Transplant Proc. 2009; 41 641-644
- 19 Sadowski E A, Djamali A, Wentland A L et al. Blood oxygen level-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn Reson Imaging. 2010; 28 56-64
- 20 An H, Lin W. Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab. 2000; 20 1225-1236
- 21 Fiehler J, Geisler B, Siemonsen S et al. T2’-Blood-Oxygen-Level-Dependent-Magnetresonanz-Bildgebung beim akuten Schlaganfall – eine Pilotstudie. Fortschr Röntgenstr. 2007; 179 17-20
- 22 Siemonsen S, Finsterbusch J, Matschke J et al. Age-dependent normal values of T 2* and T 2’ in brain parenchyma. AJNR Am J Neuroradiol. 2008; 29 950-955
- 23 Calamante F, Lythgoe M F, Pell G S et al. Early changes in water diffusion, perfusion, T 1, and T 2 during focal cerebral ischemia in the rat studied at 8.5T. Magn Reson Med. 1999; 41 479-485
- 24 Siemonsen S, Fitting T, Thomalla G et al. T2’ imaging predicts infarct growth beyond the acute diffusion-weighted imaging lesion in acute stroke. Radiology. 2008; 248 979-986
- 25 Hanna S, Helenon O, Legendre C et al. MR imaging of renal transplant rejection. Acta Radiol. 1991; 32 42-46
- 26 Helenon O, Attlan E, Legendre C et al. Gd-DOTA-enhanced MR imaging and color Doppler US of renal allograft necrosis. Radiographics. 1992; 12 21-33
- 27 Geisinger M A, Risius B, Jordan M L et al. Magnetic resonance imaging of renal transplants. Am J Roentgenol. 1984; 143 1229-1234
- 28 John R, Herzenberg A M. Our approach to a renal transplant biopsy. J Clin Pathol. 2010; 63 26-37
- 29 Ragi I, El-Said W, Ibraheem M E et al. Kidney function and histopathological changes in unilateral hydronephrosis with special reference to bilharzial ureter. Int Urol Nephrol. 1981; 13 237-248
- 30 Choo S W, Kim S H, Jeong Y G et al. MR imaging of segmental renal infarction: an experimental study. Clin Radiol. 1997; 52 65-68
- 31 Jeong J Y, Kim S H, Lee H J et al. Atypical low-signal-intensity renal parenchyma: causes and patterns. Radiographics. 2002; 22 833-846
- 32 Peces R, Sanchez R J, Fernandez E J et al. Calcificación del injerto renal no funcionante. Nefrologia. 2007; 27 217-220
- 33 Zazgornik J, Biesenbach G, Grafinger P et al. Rapid calcification of the renal graft in a 38-year old woman with type 1 diabetes. Nephrol Dial Transplant. 1996; 11 545-547
- 34 Sue Y M, Wang C C, Huang J J. Calcification of end-stage renal allograft in a peritoneal dialysis patient. Nephrol Dial Transplant. 2004; 19 2151-2152
- 35 Tzimas G N, Afshar M, Emadali A et al. Correlation of cell necrosis and tissue calcification with ischemia/reperfusion injury after liver transplantation. Transplant Proc. 2004; 36 1766-1768
Dr. Christian Mathys
Institute of Radiology, University Clinic Düsseldorf
Moorenstr. 5
40225 Düsseldorf
Germany
Phone: ++ 49/2 11/8 11 77 52
Fax: ++ 49/2 11/8 11 61 45
Email: mathys@uni-duesseldorf.de