Abstract
This review reflects on the past, present, and future of translational research on
calcitropic hormones and bone metabolism. Calcitonin (CT) and parathormone (PTH) are
complementary hormones involved in the acquisition and maintenance of bone mass and
regulation of calcium metabolism. Early research demonstrated that these hormones
could have an important role in the treatment of osteoporosis. Calcitonin was approved
for this indication by the FDA more than two decades ago, and PTH gained regulatory
approval for the treatment of osteoporosis nearly ten years ago. Unfortunately, basic
research underlying the mechanism of action of these agents has lagged behind drug
approval, and the role of these hormones in bone remodeling is still not firmly established.
Moreover, research in bone biology shifted from these hormones to smaller molecules
and paracrine regulators of skeletal remodeling. Although important, this development
was somewhat unfortunate because without a clearer understanding of how calcitropic
hormones work, we cannot be sure that they are being used optimally in the management
of osteoporosis. In this review, we look at what is known about CT and PTH and the
cells that they target, namely osteoblasts, osteoclasts, and osteocytes. We then identify
gaps in knowledge and the research needed to fill them. The conduct of mechanistic
studies may point to important factors, such as diurnal variation and dose responsiveness
that would lead to improved treatment regimens. By reopening lines of basic and clinical
investigation and applying those findings at the bedside, we hope to restart the cycle
of translational research in this area.
Key words
parathyroid hormone - calcitonin - osteoporosis - bone mineral density - osteoblast
References
- 1
Torres PU.
The need for reliable serum parathyroid hormone measurements.
Kidney Int.
2006;
70
240-243
- 2
Lanske B, Razzaque MS.
Vitamin D and aging: old concepts and new insights.
J Nutr Biochem.
2007;
18
771-777
- 3
Copp DH, Cameron EC.
Demonstration of a hypocalcemic factor (calcitonin) in commercial parathyroid extract.
Science.
1961;
134
2038
- 4
Neher R, Riniker B, Maier R, Byfield PG, Gudmundsson TV, MacIntyre I.
Human calcitonin.
Nature.
1968;
220
984-986
- 5
Lerner UH.
Deletions of genes encondig calcitonin/α-CGRP, amylin and calcitonin receptor have
given new and unexpected insights into the function of calcitonin receptors and calcitonin
receptor-like receptor in bone.
J Musculoskelet Neuronal Interact.
2006;
6
87-95
- 6
Shinki T, Ueno Y, DeLuca HF, Suda T.
Calcitonin is a major regulator for the expression of renal 25-hydroxyvitamin D3-1alpha-hydroxylase
gene in normocalcemic rats.
Proc Natl Acad Sci USA.
1999;
96
8253-8258
- 7
Chambers TJ, Chambers JC, Symonds J, Darby JA.
The effect of human calcitonin on the cytoplasmic spreading of rat osteoclasts.
J Clin Endocrinol Metab.
1986;
63
1080-1085
- 8
Wimalawansa SJ.
Calcitonin gene-related peptide and its receptors: molecular genetics, physiology,
pathophysiology, and therapeutic potentials.
Endoc Rev.
1996;
17
533-585
- 9
Woodrow JP, Sharpe CJ, Fudge NJ, Hoff AO, Gagel RF, Kovacs CS.
Calcitonin plays a critical role in regulating skeletal mineral metabolism during
lactation.
Endocrinology.
2006;
147
4010-4021
- 10
Davey RA, Turner AG, McManus JF, Maria-Chiu WS, Tjahyono F, Moore AJ, Atkins GJ, Anderson PH,
Ma C, Glatt V, MacLean HE, Vincent C, Bouxsein M, Morris HA, Findlay DM, Zajac JD.
Calcitonin receptor plays a physiological role to protect against hypercalcemia in
mice.
J Bone Miner Res.
2008;
23
1182-1193
- 11
Daripa M, Paula FJ, Rufino AC, Foss MC.
Impact of congenital calcitonin deficiency due to dysgenetic hypothyroidism on bone
mineral density.
Braz J Med Biol Res.
2004;
37
61-68
- 12
Hurley DL, Tiegs RD, Wahner HW, Heath III H.
Axial and appendicular bone mineral density in patients with long-term deficiency
or excess of calcitonin.
N Engl J Med.
1987;
317
537-541
- 13
Hoff AO, Catala-Lehnen P, Thomas PM, Priemel M, Rueger JM, Nasonkin I, Bradley A,
Hughes MR, Ordonez N, Cote GJ, Amling M, Gagel RF.
Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin
gene.
J Clin Invest.
2002;
110
1849-1857
- 14
Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, Gebre-Medhim S,
Galson DL, Zajac JD, Karsenty G.
Amylin inhibits bone resorption while the calcitonin receptor controls bone formation
in vivo.
J Cell Biol.
2004;
164
509-514
- 15
Owan I, Ibaraki K.
The role of calcitonin gene-related peptide (CGRP) in macrophages: the presence of
functional receptors and effects on proliferation and differentiation into osteoclast-like
cells.
Bone Miner.
1994;
24
151-164
- 16
Cornish J, Callon KE, Lin CQ, Xiao CL, Gamble GD, Cooper GJ, Reid IR.
Comparision of the effects of calcitonin gene-related peptide to osteoblasts increases
bone density in mice.
J bone Miner Res.
1999;
14
1302-1309
- 17
Gagel RF, Hoff AO, Huang SE, Cote GJ.
Deletion of calcitonin/CGRP gene causes a profound cortical resorption phenotype in
mice.
J Bone Miner Res.
2007;
22
S1-S35
- 18
Huebner AK, Schinke T, Matthias P, Schilling S, Schilling AF, Emeson RB, Rueger JM,
Amling M.
Calcitonin deficiency in mice progressively results in high bone turnover.
J Bone Miner Res.
2006;
21
1924-1934
- 19
PROOF Study Group
.
Chesnut III CH, Silverman S, Andriano K, Genant H, Gimona A, Harris S, Kiel D, LeBoff M,
Maricic M, Miller P, Moniz C, Peacock M, Richardson P, Watts N, Baylink D.
A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established
osteoporosis: the PROOF study.
Am J Med.
2000;
109
267-276
- 20
Karsdal MA, Henriksen K, Arnold M, Christiansen C.
Calcitonin: a drug of the past or for the future? Physiologic inhibition of bone resorption
while sustaining osteoclast numbers improves bone quality.
BioDrugs.
2008;
22
137-144
- 21
Mehta NM, Malootian A, Gilligan JP.
Calcitonin for osteoporosis and bone pain.
Curr Pharm Des.
2003;
9
2659-2676
- 22
Karsdal MA, Byrjalsen I, Riis BJ, Christiansen C.
Optimizing bioavailability of oral administration of small peptides through pharmacokinetic
and pharmacodynamic parameters: the effect of water and timing of meal intake on oral
delivery of Salmon Calcitonin.
BMC Clin Pharmacol.
2008;
8
5
- 23
Mustata G, Dihn SM.
Approach to oral drug delivery for challenging molecules.
Crit Rev Ther Drug Carrier Syst.
2006;
23
111-135
- 24
Wu SJ, Robinson JR.
Transcellular and lipophilic complex-enhanced intestinal absorption of human growth
hormone.
Pharm Res.
1999;
16
1266-1272
- 25
Tankó LB, Bagger YZ, Alexandersen P, Devogelaer JP, Reginster JY, Chick R, Olson M,
Benmammar H, Mindeholm L, Azria M, Christiansen C.
Safety and efficacy of a novel salmon calcitonin (sCT) technology-based oral formulation
in healthy postmenopausal women: acute and 3-month effects on biomarkers of bone turnover.
J Bone Miner Res.
2004;
19
1531-1538
- 26
Karsdal MA, Byrjalsen I, Riis BJ, Christiansen C.
Investigation of the diurnal variation in bone resorption for optimal drug delivery
and efficacy in osteoporosis with oral calcitonin.
BMC Clin Pharmacol.
2008;
8
12
- 27
Brown EM.
The calcium-sensing receptor: physiology, pathophysiology and CaR-based therapeutics.
Subcell Biochem.
2007;
45
139-167
- 28
Lanna CM, Paula FJ, Montenegro Jr RM, Moreira AC, Foss MC.
Parathyroid hormone secretion in chronic human endogenous hypercortisolism.
Braz J Med Biol Res.
2002;
35
229-236
- 29
Paula FJ, Lanna CM, Shuhama T, Foss MC.
Effect of metabolic control on parathyroid hormone secretion in diabetic patients.
Braz J Med Biol Res.
2001;
34
1139-1145
- 30
Jüppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J, Kolakowski Jr LF,
Hock J, Potts Jr JT, Kronenberg HM.
A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related
peptide.
Science.
1991;
254
1024-1026
- 31
Anastasilakis AD, Efstathiadou Z, Plevraki E, Koukoulis GN, Slavakis A, Kita M, Avramidis A.
Effect of exogenous intermittent recombinant human PTH 1–34 administration and chronic
endogenous parathyroid hormone excess on glucose homeostasis and insulin sensitivity.
Horm Metab Res.
2008;
40
702-707
- 32
Cha H, Jeong HJ, Jang SP, Kim JY, Yang DK, Oh JG, Park WJ.
PTH accelerates decompensation following left ventricular hypertrophy.
Exp Mol Med.
2010;
42
61-68
- 33
Rubin MR, Bilezikian JP, McMahon DJ, Jacobs T, Shane E, Siris E, Udesky J, Silverberg SJ.
The Natural History of Primary Hyperparathyroidism with or without Parathyroid Surgery
after 15 Years.
J Clin Endocrinol Metab.
2008;
93
3462-3470
- 34
de Albuquerque Taveira AT, Fernandes MI, Galvão LC, Sawamura R, de Mello Vieira E,
de Paula FJ.
Impairment of bone mass development in children with chronic cholestatic liver disease.
Clin Endocrinol.
2007;
66
518-523
- 35
Doga M, Mazziotti G, Bonadonna S, Patelli I, Bilezikian JP, Canalis E, Giustina A.
Prevention and treatment of glucocorticoid-induced osteoporosis.
J Endocrinol Invest.
2008;
31
(S 07)
535-538
- 36
Haagensen AL, Feldman HA, Ringelheim J, Gordon CM.
Low prevalence of vitamin D deficiency among adolescents with anorexia nervosa.
Osteoporos Int.
2008;
19
289-294
- 37
Oelzner P, Lehmann G, Eidner T, Franke S, Müller A, Wolf G, Hein G.
Hypercalcemia in rheumatoid arthritis: relationship with disease activity and bone
metabolism.
Rheumatol Int.
2006;
26
908-915
- 38
Kajil H, Yamauchi M, Chihara K, Sugimoto T.
Relationship between endogenous parathyroid hormone and bone metabolism/geometry in
female patients treated with glucocorticoid.
Horm Metab Res.
2008;
40
60-65
- 39
Reusch J, Ackermann H, Badenhoop K.
Cyclic changes of vitamin D and PTH are primarily regulated by solar radiation: 5-Year
analysis of a German (50° N) population.
Horm Metab Res.
2009;
41
402-407
- 40
Tam CS, Heersche JN, Murray TM, Parsons JA.
Parathyroid hormone stimulates the bone apposition rate independently of its resorptive
action: differential effects of intermittent and continuous administration.
Endocrinology.
1982;
110
506-512
- 41
Anastasilakis AD, Polyzos SA, Avramidis A, Papatheodorou A, Terpos E.
Effect of strontium ranelate on lumbar spine bone mineral density in women with established
osteoporosis previously treated with teriparatide.
Horm Metab Res.
2009;
41
559-562
- 42
Kulkarni NH, Wei T, Kumar A, Dow ER, Stewart TR, Shou J, N’Cho M, Sterchi DL, Gitter BD,
Higgs RE, Halladay DL, Engler TA, Martin TJ, Bryant HU, Ma YL, Onyia JE.
Changes in osteoblast, chondrocyte, and adipocyte lineages mediate the bone anabolic
actions of PTH and small molecule GSK-3 inhibitor.
J Cell Biochem.
2007;
102
1504-1518
- 43
Rickard DJ, Wang FL, Rodriguez-Rojas AM, Wu Z, Trice WJ, Hoffman SJ, Votta B, Stroup GB,
Kumar S, Nuttall ME.
Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small
molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human
bone marrowstromal cells.
Bone.
2006;
39
1361-1372
- 44
Allan EH, Häusler KD, Wei T, Gooi JH, Quinn JM, Crimeen-Irwin B, Pompolo S, Sims NA,
Gillespie MT, Onyia JE, Martin TJ.
EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating
osteoblasts.
J Bone Miner Res.
2008;
23
1170-1181
- 45
Logue FC, Fraser WD, O’Reilly DS, Cameron DA, Kelly AJ, Beastall GH.
The circadian rhythm of intact parathyroid hormone-(1–84): temporal correlation with
prolactin secretion in normal men.
J Clin Endocrinol Metab.
1990;
71
1556-1560
- 46
Fraser WD, Logue FC, Christie JP, Gallacher SJ, Cameron D, O’Reilly DS, Beastall GH,
Boyle IT.
Alteration of the circadian rhythm of intact parathyroid hormone and serum phosphate
in women with established postmenopausal osteoporosis.
Osteoporos Int.
1998;
8
121-126
- 47
Lobaugh B, Neelon FA, Oyama H, Buckley N, Smith S, Christy M, Leight Jr GS.
Circadian rhythms for calcium, inorganic phosphorus, and parathyroid hormone in primary
hyperparathyroidism: functional and practical considerations.
Surgery.
1989;
106
1009-1016
- 48
Prank K, Nowlan SJ, Harms HM, Kloppstech M, Brabant G, Hesch RD, Sejnowski TJ.
Time series prediction of plasma hormone concentration. Evidence for differences in
predictability of parathyroid hormone secretion between osteoporotic patients and
normal controls.
J Clin Invest.
1995;
95
2910-2919
- 49
Silverberg SJ, Shane E, de la Cruz L, Segre GV, Clemens TL, Bilezikian JP.
Abnormalities in parathyroid hormone secretion and 1,25-diydroxyvitamin D3 formation
in women with osteoporosis.
N Engl J Med.
1989;
320
277-281
- 50
Pereira LC, Pereira FA, Sá MF, Foss MC, dePaula FJ.
Parathyroid hormone secretion in women in late menopause submitted to EDTA-induced
hypocalcemia.
Maturitas.
2008;
59
91-94
- 51
Hamilton JW, Jilka RL, MacGregor RR.
Cleavage of parathyroid hormone to the 1–34 and 35–84 fragments by cathepsin D-like
activityin bovine parathyroid gland extracts.
Endocrinology.
1983;
113
285-292
- 52
Friedman PA, Goodman WG.
PTH (1–84)/PTH (7–84): A balance of power.
Am J Physiol Renal Physiol.
2006;
290
F975-F984
- 53
Jilka RL.
Molecular and cellular mechanisms of the anabolic effect of intermittent PTH.
Bone.
2007;
40
1434-1446
- 54
Hock JM, Onyia JE, Miller B, Hulman J, Herring J, Chandrasekhar S, Harvey AK, Gunness M.
Anabolic PTH targets proliferating cells of the primary spongiosa in young rats, and
increases the number differentiating into osteoblasts.
J Bone Miner Res.
1994;
9
S412
- 55
Schmidt IU, Dobnig H, Turner RT.
Intermittent parathyroid hormone treatment increases osteoblast number, steady state
messenger ribonucleic acid levels for osteocalcin, and bone formation in tibial metaphysis
of hypophysectomized female rats.
Endocrinology.
1995;
136
5127-5133
- 56
Bellido T, Ali AA, Plotkin LI, Fu Q, Gubrij I, Robertson PK, Weistein RS, O’Brien CA,
Manolagas SC, Jilka RL.
Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic
signaling in osteoblasts: a putative explanation for why intermittent administration
is needed for bone anabolism.
J Biol Chem.
2003;
278
50259-50272
- 57
Krishnan V, Moore TL, Ma YL, Helvering LM, Frolik CA, Valasek KM, Ducy P, Geiser AG.
Parathyroid hormone bone anabolic action requires Cbfa1/Runx2-dependent signaling.
Mol Endocrinol.
2003;
17
423-435
- 58
Rosen CJ.
Insulin-like growth factor I and bone mineral density: Experience from animal models
and human observational studies.
Best Pract Res Clin Endocrinol Metab.
2004;
18
423-435
- 59
Wang Y, Nishida S, Boudignon BM, Burghardt A, Elalieh HZ, Hamilton MM, Majundar S,
Halloran BP, Clemens TL, Bikle DD.
IGF-I receptor is required for the anabolic actions of parathyroid Hormoneon Bone.
J Bone Miner Res.
2007;
22
1329-1337
- 60
Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S.
Evidence that anabolic effects of PTH on bone require IGF-I in growing mice.
Endocrinology.
2001;
142
4349-4356
- 61
Yakar S, Brouxsein ML, Canalis E, Sun H, Glatt V, Gundberg C, Cohen P, Hwanq D, Boisclair Y,
Leroith D, Rosen CJ.
The ternary IGF complex influences postnatal bone acquisition and the skeletal response
to intermittent parathyroid hormone.
J Endocrinol.
2006;
189
289-299
- 62
Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ.
Modulation of osteoclast differentiation and function by the new members of the tumor
necrosis factor receptor and ligand families.
Endocr Rev.
1999;
20
345-357
- 63
Rodan GA, Martin TJ.
Role of osteoblasts in hormonal control of bone resorption – a hypothesis [letter].
Calcif Tissue Int.
1982;
34
311
- 64
Rubin J, Ackert-Bicknell CL, Zhu L, Fan X, Murphy TC, Nanes MS, Marcus R, Holloway L,
Beamer WG, Rosen CJ.
IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB
ligand in vitro and OPG in vivo.
J Clin Endocrinol Metab.
2002;
87
4273-4279
- 65
Li X, Liu H, Qin L, Tamasi J, Bergenstock M, Shapses S, Feyen JHM, Notterman DA, Partridge NC.
Determination of dual effects of parathyroid hormone on skeletal gene expression in
vivo by microarray and network analysis.
J Biol Chem.
2007;
282
33086-33097
- 66
Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC.
Parathyroid Hormone Stimulates Osteoblastic Expression of MCP-1 to Recruit and Increase
the Fusion of Pre/Osteoclasts.
J Biol Chem.
2007;
282
33098-33106
- 67
Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Garnero P, Bouxsein ML,
Bilezikian JP, Rosen CJ.
PaTH Study Investigators
.
The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal
osteoporosis.
N Engl J Med.
2003;
349
1207-1215
- 68
Winkler DG, Sutherland Mk, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M,
Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA.
Osteocyte control of bone formation via sclerostin, a novel BMP antagonist.
EMBO J.
2003;
22
6267-6276
- 69
Kerachian MA, Séguin C, Harvey EJ.
Glucocorticoids in osteonecrosis of the femoral head: a new understanding of the mechanisms
of action.
J Steroid Biochem Mol Biol.
2009;
114
121-128
- 70
Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, Manolagas SC, Jilka RL.
Chronic elevation of parathyroid hormone in mice reduces expression of scherostin
by osteocytes: A novel mechanism for hormonal control of osteoblastogenesis.
Endocrinology.
2005;
146
4577-4583
- 71
Keller H, Kneissel M.
SOST is a target gene for PTH in bone.
Bone.
2005;
37
148-158
- 72
O’Brien CA, Plotkin LI, Galli C, Goelner JJ, Gortazar AR, Allen MR, Robling A, Brouxsein M,
Schipani E, Turner CH, Jilka RL, Weinstein RS, Manolagas SC, Bellido T.
Control of bone mass and remodeling by PTH receptor signaling in osteocytes.
PLoS One.
2008;
3
e2942
Correspondence
C. J. Rosen
Maine Medical Center Research Institute
81 Research Drive
Scarborough
ME 04074-7205
USA
Phone: +1/;207/8858100
Fax: +1/207/8858185
Email: rosenc@mmc.org