Subscribe to RSS
DOI: 10.1055/s-0030-1248304
© Georg Thieme Verlag KG Stuttgart · New York
Measurement of Adiponectin Production from Differentiated Metabolic Stem Cells
Publication History
received 06.10.2009
accepted 28.01.2010
Publication Date:
10 March 2010 (online)

Abstract
To treat metabolic syndrome, fat tissue dysfunction should be corrected rather than controlling conventional risk factors such as hypertension, dyslipidemia, and diabetes mellitus. For this purpose, accumulating evidence suggests increasing plasma adiponectin levels can be a key treatment strategy, especially in setting of food or drug selection. Here we report that adipocyte precursors obtained from several sites of fat tissue, which we call Metabolic Stem Cells (MSC), could be used as a novel screening system to identify adiponectin enhancing drugs or food for individual patients. MSC were prepared from fat tissues collected from 29 patients. They were differentiated in cultures into mature adipocytes. The time course of adiponectin production was independent of the number of mature adipocytes and gradually decreased at 48 h after differentiation. Pioglitazone, a full PPARγ agonist, stabilized adiponectin production at days 8–16 after differentiation, whereas telmisartan, a partial PPARγ agonist, showed variable response. Dividing the adiponectin secretion of day 12 by that of day 10 provided an estimate of adiponectin-producing activity irrespective of the number of MSC-derived adipocytes in culture. Using this score of adiponectin-production activity, we successfully assessed 16 agents in a 96-well plate. The effect of each agent on adiponectin production showed a similar pattern, independent of the site of isolated adipose tissue. Our results show that MSC can be used as a tool for selecting drugs that enhance adiponectin-production activity.
Key words
adipocyte - stem cell - adiponectin
References
- 1
Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS.
Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001.
JAMA.
2003;
289
76-79
MissingFormLabel
- 2
Bray GA, Greenway FL.
Pharmacological treatment of the overweight patient.
Pharmacol Rev.
2007;
59
151-184
MissingFormLabel
- 3
Maeda K, Okubo K, Shimomura I, Mizuno K, Matsuzawa Y, Matsubara K.
Analysis of an expression profile of genes in the human adipose tissue.
Gene.
1997;
190
227-235
MissingFormLabel
- 4
Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K.
cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1
(AdiPose Most abundant Gene transcript 1).
Biochem Biophys Res Commun.
1996;
221
286-289
MissingFormLabel
- 5
Matsuzawa Y, Funahashi T, Kihara S, Shimomura I.
Adiponectin and metabolic syndrome.
Arterioscler Thromb Vasc Biol.
2004;
24
29-33
MissingFormLabel
- 6
Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H.
Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction.
Nat Med.
2006;
12
459-465
MissingFormLabel
- 7
Hiuge A, Tenenbaum A, Maeda N, Benderly M, Kumada M, Fisman EZ, Tanne D, Matas Z, Hibuse T, Fujita K, Nishizawa H, Adler Y, Motro M, Kihara S, Shimomura I, Behar S, Funahashi T.
Effects of peroxisome proliferator-activated receptor ligands, bezafibrate and fenofibrate,
on adiponectin level.
Arterioscler Thromb Vasc Biol.
2007;
27
635-641
MissingFormLabel
- 8
Trayhurn P.
Endocrine and signalling role of adipose tissue: new perspectives on fat.
Acta Physiol Scand.
2005;
184
285-293
MissingFormLabel
- 9
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH.
Multilineage cells from human adipose tissue: implications for cell-based therapies.
Tissue Eng.
2001;
7
211-228
MissingFormLabel
- 10
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH.
Human adipose tissue is a source of multipotent stem cells.
Mol Biol Cell.
2002;
13
4279-4295
MissingFormLabel
- 11
Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L.
Plasticity of human adipose lineage cells toward endothelial cells: physiological
and therapeutic perspectives.
Circulation.
2004;
109
656-663
MissingFormLabel
- 12
Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A.
Improvement of postnatal neovascularization by human adipose tissue-derived stem cells.
Circulation.
2004;
110
349-355
MissingFormLabel
- 13
Planat-Benard V, Menard C, Andre M, Puceat M, Perez A, Garcia-Verdugo JM, Penicaud L, Casteilla L.
Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells.
Circ Res.
2004;
94
223-229
MissingFormLabel
- 14
Seo MJ, Suh SY, Bae YC, Jung JS.
Differentiation of human adipose stromal cells into hepatic lineage in vitro and in
vivo.
Biochem Biophys Res Commun.
2005;
328
258-264
MissingFormLabel
- 15
Sengenes C, Lolmede K, Zakaroff-Girard A, Busse R, Bouloumie A.
Preadipocytes in the human subcutaneous adipose tissue display distinct features from
the adult mesenchymal and hematopoietic stem cells.
J Cell Physiol.
2005;
205
114-122
MissingFormLabel
- 16
Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM.
Surface protein characterization of human adipose tissue-derived stromal cells.
J Cell Physiol.
2001;
189
54-63
MissingFormLabel
- 17
Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC.
Cell surface and transcriptional characterization of human adipose-derived adherent
stromal (hADAS) cells.
Stem Cells.
2005;
23
412-423
MissingFormLabel
- 18
Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, Kikuchi Y, Saito Y, Tamai K, Ogihara T, Kaneda Y.
Novel autologous cell therapy in ischemic limb disease through growth factor secretion
by cultured adipose tissue-derived stromal cells.
Arterioscler Thromb Vasc Biol.
2005;
25
2542-2547
MissingFormLabel
- 19
Rodeheffer MS, Birsoy K, Friedman JM.
Identification of white adipocyte progenitor cells in vivo.
Cell.
2008;
135
240-249
MissingFormLabel
- 20
Sugiyama H, Maeda K, Yamato M, Hayashi R, Soma T, Hayashida Y, Yang J, Shirakabe M, Matsuyama A, Kikuchi A, Sawa Y, Okano T, Tano Y, Nishida K.
Human adipose tissue-derived mesenchymal stem cells as a novel feeder layer for epithelial
cells.
J Tissue Eng Regen Med.
2008;
2
445-449
MissingFormLabel
- 21
Kanda Y, Matsuda M, Tawaramoto K, Kawasaki F, Hashiramoto M, Matsuki M, Kaku K.
Effects of sulfonylurea drugs on adiponectin production from 3T3-L1 adipocytes: implication
of different mechanism from pioglitazone.
Diabetes Res Clin Pract.
2008;
81
13-18
MissingFormLabel
- 22
Schupp M, Janke J, Clasen R, Unger T, Kintscher U.
Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma
activity.
Circulation.
2004;
109
2054-2057
MissingFormLabel
- 23
Clasen R, Schupp M, Foryst-Ludwig A, Sprang C, Clemenz M, Krikov M, Thone-Reineke C, Unger T, Kintscher U.
PPARgamma-activating angiotensin type-1 receptor blockers induce adiponectin.
Hypertension.
2005;
46
137-143
MissingFormLabel
- 24
Kurata A, Nishizawa H, Kihara S, Maeda N, Sonoda M, Okada T, Ohashi K, Hibuse T, Fujita K, Yasui A, Hiuge A, Kumada M, Kuriyama H, Shimomura I, Funahashi T.
Blockade of Angiotensin II type-1 receptor reduces oxidative stress in adipose tissue
and ameliorates adipocytokine dysregulation.
Kidney Int.
2006;
70
1717-1724
MissingFormLabel
- 25
Kikuchi Y, Yamada M, Imakiire T, Kushiyama T, Higashi K, Hyodo N, Yamamoto K, Oda T, Suzuki S, Miura S.
A Rho-kinase inhibitor, fasudil, prevents development of diabetes and nephropathy
in insulin-resistant diabetic rats.
J Endocrinol.
2007;
192
595-603
MissingFormLabel
- 26
Matsumoto S, Takebayashi K, Aso Y.
The effect of spironolactone on circulating adipocytokines in patients with type 2
diabetes mellitus complicated by diabetic nephropathy.
Metabolism.
2006;
55
1645-1652
MissingFormLabel
- 27
Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, Li J, Williams GH, Adler GK.
Mineralocorticoid receptor blockade reverses obesity-related changes in expression
of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory
adipokines.
Circulation.
2008;
117
2253-2261
MissingFormLabel
- 28
Bensaid M, Gary-Bobo M, Esclangon A, Maffrand JP, Le Fur G, Oury-Donat F, Soubrie P.
The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression
in adipose tissue of obese fa/fa rats and in cultured adipocyte cells.
Mol Pharmacol.
2003;
63
908-914
MissingFormLabel
- 29
Smith MR, Lee H, Fallon MA, Nathan DM.
Adipocytokines, obesity, and insulin resistance during combined androgen blockade
for prostate cancer.
Urology.
2008;
71
318-322
MissingFormLabel
- 30
Fukuen S, Iwaki M, Yasui A, Makishima M, Matsuda M, Shimomura I.
Sulfonylurea agents exhibit peroxisome proliferator-activated receptor gamma agonistic
activity.
J Biol Chem.
2005;
280
23653-23659
MissingFormLabel
- 31
Huypens P, Quartier E, Pipeleers D, Van de Casteele M.
Metformin reduces adiponectin protein expression and release in 3T3-L1 adipocytes
involving activation of AMP activated protein kinase.
Eur J Pharmacol.
2005;
518
90-95
MissingFormLabel
- 32
Ryo M, Maeda K, Onda T, Katashima M, Okumiya A, Nishida M, Yamaguchi T, Funahashi T, Matsuzawa Y, Nakamura T, Shimomura I.
A new simple method for the measurement of visceral fat accumulation by bioelectrical
impedance.
Diabetes Care.
2005;
28
451-453
MissingFormLabel
Correspondence
K. MaedaMD
Department of Metabolic Medicine
Graduate School of Medicine
Osaka University
2-2 Yamadaoka, Suita
565-0871 Osaka
Japan
Phone: +81/6/6879 3732
Fax: +81/6/6879 3739
Email: kaz@cam.med.osaka-u.ac.jp