Semin Respir Crit Care Med 2010; 31(2): 172-178
DOI: 10.1055/s-0030-1249112
© Thieme Medical Publishers

Current Trends in Immunosuppression for Lung Transplantation

Timothy Floreth1 , Sangeeta M. Bhorade1
  • 1Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago Medical Center, Chicago, Illinois
Further Information

Publication History

Publication Date:
30 March 2010 (online)

ABSTRACT

Lung transplant has become an established therapy in the treatment of end-stage lung disease. Many of the advances in the modern immunosuppression regimen have provided more quality and quantity of life to transplant patients. Immunosuppression agents target various aspects of the immune system to maximize graft tolerance while minimizing medication toxicities and side effects. Lung transplant regimens follow typical protocols but are always tailored to the individual patient based upon previous and current medical problems. Despite the various advances, acute and chronic rejections still occur in the majority of all lung transplants. For these reasons, long-term lung transplantation success remains a challenge. Further improvement in immunosuppression will be geared toward minimizing rejection and infection as well as being tailored to the individual patient. This review details the current armamentarium of immunosuppression medications and the current body of evidence supporting the current trends of usage.

REFERENCES

  • 1 Trulock E P, Christy J D, Edwards L B et al.. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult lung and heart-lung transplantation report—2007.  J Heart Lung Transplant. 2007;  26(8) 782-795
  • 2 Trulock E P. Lung transplantation.  Am J Respir Crit Care Med. 1997;  155 789-818
  • 3 Szczech L A, Berlin J A, Feldman H I. Anti-Lymphocyte Antibody Induction Therapy Study Group . The effect of antilymphocyte induction therapy on renal allograft survival. A meta-analysis of individual patient-level data.  Ann Intern Med. 1998;  128 817-826
  • 4 Christie J D, Edwards L B, Aurora P et al.. The Registry of the International Society for Heart and Lung Transplantation: twenty-sixth official adult lung and heart-lung transplantation report—2009.  J Heart Lung Transplant. 2009;  28(10) 1031-1049
  • 5 Husain A N, Siddiqui M T, Holmes E W et al.. Analysis of risk factors for the development of bronchiolitis obliterans syndrome.  Am J Respir Crit Care Med. 1999;  159 829-833
  • 6 Hachem R R, Khalifah A P, Chakinala M M et al.. The significance of a single episode of minimal acute rejection after lung transplantation.  Transplantation. 2005;  80 1406-1413
  • 7 Hachem R R, Edwards L B, Yusen R D, Chakinala M M, Alexander Patterson G, Trulock E P. The impact of induction on survival after lung transplantation: an analysis of the International Society for Heart and Lung Transplantation Registry.  Clin Transplant. 2008;  22 603-608
  • 8 Palmer S M, Miralles A P, Lawrence C M, Gaynor J W, Davis R D, Tapson V F. Rabbit antithymocyte globulin decreases acute rejection after lung transplantation: results of a randomized, prospective study.  Chest. 1999;  116 127-133
  • 9 Hartwig M G, Snyder L D, Appel III J Z et al.. Rabbit anti-thymocyte globulin induction therapy does not prolong survival after lung transplantation.  J Heart Lung Transplant. 2008;  27 547-553
  • 10 Moffatt S D, Demers P, Robbins R C et al.. Lung transplantation: a decade of experience.  J Heart Lung Transplant. 2005;  24 145-151
  • 11 Hachem R R, Chakinala M M, Yusen R D et al.. A comparison of basiliximab and anti-thymocyte globulin as induction agents after lung transplantation.  J Heart Lung Transplant. 2005;  24 1320-1326
  • 12 Burton C M, Andersen C B, Jensen A S et al.. The incidence of acute cellular rejection after lung transplantation: a comparative study of anti-thymocyte globulin and daclizumab.  J Heart Lung Transplant. 2006;  25 638-647
  • 13 Mullen J C, Oreopoulos A, Lien D C et al.. A randomized, controlled trial of daclizumab vs anti-thymocyte globulin induction for lung transplantation.  J Heart Lung Transplant. 2007;  26 504-510
  • 14 Garrity Jr E R, Villanueva J, Bhorade S M, Husain A N, Vigneswaran W T. Low rate of acute lung allograft rejection after the use of daclizumab, an interleukin 2 receptor antibody.  Transplantation. 2001;  71 773-777
  • 15 Levine S M. Transplant/Immunology Network of the American College of Chest Physicians . A survey of clinical practice of lung transplantation in North America.  Chest. 2004;  125 1224-1238
  • 16 Karin M. New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable?.  Cell. 1998;  93 487-490
  • 17 Rhen T, Cidlowski J A. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs.  N Engl J Med. 2005;  353 1711-1723
  • 18 Kahan B D. Cyclosporine: a revolution in transplantation.  Transplant Proc. 1999;  31(1–2A) 14S-15S
  • 19 Iversen M, Nilsson F, Sipponen J et al.. Cyclosporine C2 levels have impact on incidence of rejection in de novo lung but not heart transplant recipients: the NOCTURNE study.  J Heart Lung Transplant. 2009;  28 919-926
  • 20 Glanville A R, Aboyoun C L, Morton J M, Plit M, Malouf M A. Cyclosporine C2 target levels and acute cellular rejection after lung transplantation.  J Heart Lung Transplant. 2006;  25 928-934
  • 21 Glanville A R, Morton J M, Aboyoun C L, Plit M L, Malouf M A. Cyclosporine C2 monitoring improves renal dysfunction after lung transplantation.  J Heart Lung Transplant. 2004;  23 1170-1174
  • 22 Petric R, Freeman D, Wallace C, McDonald J, Stiller C, Keown P. Effect of cyclosporine on urinary prostanoid excretion, renal blood flow, and glomerulotubular function.  Transplantation. 1988;  45 883-889
  • 23 Schreiber S L, Liu J, Albers M W et al.. Immunophilin-ligand complexes as probes of intracellular signaling pathways.  Transplant Proc. 1991;  23 2839-2844
  • 24 Garrity Jr E R, Hertz M I, Trulock E P, Keenan R, Love R. Suggested guidelines for the use of tacrolimus in lung-transplant recipients.  J Heart Lung Transplant. 1999;  18 175-176
  • 25 Keenan R J, Konishi H, Kawai A et al.. Clinical trial of tacrolimus versus cyclosporine in lung transplantation.  Ann Thorac Surg. 1995;  60 580-584 discussion 584-585
  • 26 Treede H, Klepetko W, Reichenspurner H Munich and Vienna Lung Transplant Group et al. Tacrolimus versus cyclosporine after lung transplantation: a prospective, open, randomized two-center trial comparing two different immunosuppressive protocols.  J Heart Lung Transplant. 2001;  20 511-517
  • 27 Hachem R R, Yusen R D, Chakinala M M et al.. A randomized controlled trial of tacrolimus versus cyclosporine after lung transplantation.  J Heart Lung Transplant. 2007;  26 1012-1018
  • 28 Zuckermann A, Reichenspurner H, Birsan T et al.. Cyclosporine A versus tacrolimus in combination with mycophenolate mofetil and steroids as primary immunosuppression after lung transplantation: one-year results of a 2-center prospective randomized trial.  J Thorac Cardiovasc Surg. 2003;  125 891-900
  • 29 Reichenspurner H, Glanville A, Klepetko W et al.. Prospective randomized international multi-center investigator driven study comparing TAC and CSA (+MMF/steroids) after lung transplantation: interim analysis of 110 patients.  J Heart Lung Transplant. 2003;  22 S77
  • 30 Zuckermann A, Richensperner J, Jaksch P et al.. Long term follow-up of a prospective randomized trial comparing tacrolimus versus cyclosporine in combination with MMF after lung transplantation.  J Heart Lung Transplant. 2003;  22 S76-S77
  • 31 Hertz M I, Aurora P, Christie J D et al.. Registry of the International Society for Heart and Lung Transplantation: a quarter century of thoracic transplantation.  J Heart Lung Transplant. 2008;  27 937-942
  • 32 Franklin T J, Cook J M. The inhibition of nucleic acid synthesis by mycophenolic acid.  Biochem J. 1969;  113 515-524
  • 33 Morris R E, Hoyt E G, Murphy M P, Eugui E M, Allison A C. Mycophenolic acid morpholinoethylester (RS-61443) is a new immunosuppressant that prevents and halts heart allograft rejection by selective inhibition of T- and B-cell purine synthesis.  Transplant Proc. 1990;  22 1659-1662
  • 34 Kobashigawa J A, Renlund D G, Gerosa G ERL2401 Heart Study Investigators et al. Similar efficacy and safety of enteric-coated mycophenolate sodium (EC-MPS, myfortic) compared with mycophenolate mofetil (MMF) in de novo heart transplant recipients: results of a 12-month, single-blind, randomized, parallel-group, multicenter study.  J Heart Lung Transplant. 2006;  25 935-941
  • 35 Budde K, Curtis J, Knoll G ERL B302 Study Group et al. Enteric-coated mycophenolate sodium can be safely administered in maintenance renal transplant patients: results of a 1-year study.  Am J Transplant. 2004;  4 237-243
  • 36 McNeil K, Glanville A R, Wahlers T et al.. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients.  Transplantation. 2006;  81 998-1003
  • 37 Lai J H, Tan T H. CD28 signaling causes a sustained down-regulation of I kappa B alpha which can be prevented by the immunosuppressant rapamycin.  J Biol Chem. 1994;  269 30077-30080
  • 38 King-Biggs M B, Dunitz J M, Park S J, Kay Savik S, Hertz M I. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation.  Transplantation. 2003;  75 1437-1443
  • 39 McWilliams T J, Levvey B J, Russell P A, Milne D G, Snell G I. Interstitial pneumonitis associated with sirolimus: a dilemma for lung transplantation.  J Heart Lung Transplant. 2003;  22 210-213
  • 40 Snell G I, Levvey B J, Chin W et al.. Rescue therapy: a role for sirolimus in lung and heart transplant recipients.  Transplant Proc. 2001;  33 1084-1085
  • 41 Snell G I, Valentine V G, Vitulo P RAD B159 Study Group et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial.  Am J Transplant. 2006;  6 169-177
  • 42 Valentine V G, Robbins R C, Wehner J H, Patel H R, Berry G J, Theodore J. Total lymphoid irradiation for refractory acute rejection in heart-lung and lung allografts.  Chest. 1996;  109 1184-1189
  • 43 Shennib H, Mercado M, Nguyen D et al.. Successful treatment of steroid-resistant double-lung allograft rejection with Orthoclone OKT3.  Am Rev Respir Dis. 1991;  144 224-226
  • 44 Iacono A T, Smaldone G C, Keenan R J et al.. Dose-related reversal of acute lung rejection by aerosolized cyclosporine.  Am J Respir Crit Care Med. 1997;  155 1690-1698
  • 45 Reams B D, Davis R D, Curl J, Palmer S M. Treatment of refractory acute rejection in a lung transplant recipient with campath 1H.  Transplantation. 2002;  74 903-904
  • 46 Banner N R, Rose M L, Cummins D et al.. Management of an ABO-incompatible lung transplant.  Am J Transplant. 2004;  4 1192-1196
  • 47 Sarahrudi K, Estenne M, Corris P et al.. International experience with conversion from cyclosporine to tacrolimus for acute and chronic lung allograft rejection.  J Thorac Cardiovasc Surg. 2004;  127 1126-1132
  • 48 Yates B, Murphy D M, Forrest I A et al.. Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrome.  Am J Respir Crit Care Med. 2005;  172 772-775
  • 49 Redmund K F, Guo Z, Rechsteiner T et al.. Clarithromycin has a preventative effect on chronic rejection by downregulation of innate immunity and mesenchymal growth.  J Heart Lung Transplant. 2005;  24 S144
  • 50 Tateda K, Comte R, Pechere J C, Köhler T, Yamaguchi K, Van Delden C. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa .  Antimicrob Agents Chemother. 2001;  45 1930-1933
  • 51 Yamasawa H, Oshikawa K, Ohno S, Sugiyama Y. Macrolides inhibit epithelial cell-mediated neutrophil survival by modulating granulocyte macrophage colony-stimulating factor release.  Am J Respir Cell Mol Biol. 2004;  30 569-575
  • 52 Johnson B A, Iacono A T, Zeevi A, McCurry K R, Duncan S R. Statin use is associated with improved function and survival of lung allografts.  Am J Respir Crit Care Med. 2003;  167 1271-1278
  • 53 Murphy D M, Forrest I A, Corris P A et al.. Simvastatin attenuates release of neutrophilic and remodeling factors from primary bronchial epithelial cells derived from stable lung transplant recipients.  Am J Physiol Lung Cell Mol Physiol. 2008;  294 L592-L599
  • 54 Fisher A J, Rutherford R M, Bozzino J, Parry G, Dark J H, Corris P A. The safety and efficacy of total lymphoid irradiation in progressive bronchiolitis obliterans syndrome after lung transplantation.  Am J Transplant. 2005;  5 537-543
  • 55 Novick R J, Kaye M P, Patterson G A et al.. Redo lung transplantation: a North American–European experience.  J Heart Lung Transplant. 1993;  12(1 Pt 1) 5-15 discussion 15-16

Sangeeta M BhoradeM.D. 

Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago Medical Center

5841 S. Maryland Ave., MC 0999, Chicago, IL 60637

Email: sbhorade@medicine.bsd.uchicago.edu