Planta Med 2010; 76(15): 1724-1731
DOI: 10.1055/s-0030-1249938
Natural Product Chemistry
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Glucosylation of Steroidal Saponins by Cyclodextrin Glucanotransferase

Yong-ze Wang1 , 2 [*] , Bing Feng1 [*] , Hong-zhi Huang1 , 2 , Li-ping Kang1 , Yue Cong1 , Wen-bin Zhou1 , Peng Zou1 , 2 , Yu-wen Cong1 , Xin-bo Song2 [*] , Bai-ping Ma1
  • 1Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
  • 2Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
Further Information

Publication History

received Nov. 11, 2009 revised April 6, 2010

accepted April 16, 2010

Publication Date:
19 May 2010 (online)

Abstract

It is known that the sugar chains of steroidal saponins play an important role in the biological and pharmacological activities. In order to synthesize steroidal saponins with novel sugar chains in one step for further studies on pharmacological activity, we here describe the glucosylation of steroidal saponins, and 5 compounds, timosaponin AIII (1), saponin Ta (2), saponin Tb (3), trillin (4) and cantalasaponin I (5), were converted into their glucosylated products by Toruzyme 3.0 L, a cyclodextrin glucanotransferase (CGTase). 12 glucosylated products were isolated and their structures elucidated on the basis of spectral data; they were all characterized as new compounds. The results showed that Toruzyme 3.0 L had the specific ability to add the α-D-glucopyranosyl group to the glucosyl group linked at the sugar chains of steroidal saponins, and the glucosyl group was the only acceptor. This is the first report of steroidal saponins with different degrees of glucosylation. The substrates and their glucosylated derivatives were evaluated for their cytotoxicity against HL-60 human promyelocytic leukemia cell by MTT assay. The substrates all exhibited high cytotoxicity (IC50 < 10 µmol/L), excluding compound 5 (IC50 > 150 µmol/L), and the cytotoxicity of most of the products showed no obvious changes compared with those of their substrates.

References

  • 1 Mahato S B, Ganguly A N, Sahu N P. Steroidal sapinins.  Phytochemistry. 1982;  21 956-978
  • 2 Itabashi M, Segawa K, Ikeda Y, Kondo S, Naganawa H, Koyano T, Umezawa K. A new bioactive steroidal saponin, furcreastain, from the plant Furcraea foetida.  Carbohydr Res. 2000;  323 57-62
  • 3 Sparg S G, Light M E, van Staden J. Biological activities and distribution of plant saponins.  J Ethnopharmacol. 2004;  94 219-243
  • 4 Ohtsuki T, Sato M, Koyano T, Kowithayakorn T, Kawahara N, Goda Y, Ishibashi M. Steroidal saponins from Calamus insignis, and their cell growth and cell cycle inhibitory activities.  Bioorg Med Chem. 2006;  14 659-665
  • 5 Ghosh P, Besra S E, Tripathi G, Mitra S, Vedasiromoni J R. Cytotoxic and apoptogenic effect of tea (Camellia sinensis var. assamica) root extract (TRE) and two of its steroidal saponins TS1 and TS2 on human leukemic cell lines K562 and U937 and on cells of CML and ALL patients.  Leuk Res. 2006;  30 459-468
  • 6 Akihito Y, Yoshihiro M, Yutaka S. Spirostanol saponins from the rhizomes of Tacca chantrieri and their cytotoxic activity.  Phytochemistry. 2002;  61 73-78
  • 7 Hu G H, Lu Y H, Mao R G, Wei D Z, Ma Z Z, Zhang H. Aphrodisiac properties of Allium tuberosum seeds extract.  J Ethnopharmacol. 2009;  122 579-582
  • 8 Mimaki Y, Yokosuka A, Kuroda M, Sashida Y. Cytotoxic activities and structure – cytotoxic relationships of steroidal saponins.  Biol Pharm Bull. 2001;  24 1286-1289
  • 9 Trouillas P, Corbière C, Liagre B, Duroux J L, Beneytout J L. Structure-function relationship for saponin effects on cell cycle arrest and apoptosis in the human 1547 osteosarcoma cells: a molecular modelling approach of natural molecules structurally close to diosgenin.  Bioorg Med Chem. 2005;  13 1141-1149
  • 10 Giri A, Dhingra V, Giri C C, Singh A, Ward O P, Narasu M L. Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects.  Biotechnol Adv. 2001;  19 175-199
  • 11 Su J H, Xu J H, Lu W Y, Lin G Q. Enzymatic transformation of ginsenoside Rg3 to Rh2 using newly isolated Fusarium proliferatum ECU2042.  J Mol Catal B Enzym. 2006;  38 113-118
  • 12 Zhan J X, Guo H Z, Dai J G, Zhang Y X, Guo D. Microbial transformations of artemisinin by Cunninghamella echinulata and Aspergillus niger.  Tetrahedron Lett. 2002;  43 4519-4521
  • 13 Montero E, Alonso J, Cañada F J, Fernández-Mayoralas A, Martín-Lomas M. Regioselectivity of the enzymatic transgalactosidation of D- and L-xylose catalysed by 3-galactosidases.  Carbohydr Res. 1998;  305 383-391
  • 14 Bowles D, Isayenkova J, Lim E K, Poppenberger B. Glycosyltransferases: managers of small molecules.  Curr Opin Plant Biol. 2005;  8 254-263
  • 15 Gachon C M M, Langlois-Meurinne M, Saindrenan P. Plant secondary metabolism glycosyltransferases: the emerging functional analysis.  Trends Plant Sci. 2005;  10 542-549
  • 16 Kramer C M, Prata R T N, Willits M G, De Luca V, Steffens J C, Graser G. Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa.  Phytochemistry. 2003;  64 1069-1076
  • 17 Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T. Biotransformation of umbelliferone by Panax ginseng root cultures.  Tetrahedron Lett. 2002;  43 5633-5635
  • 18 Alexandra T. Bacterial cyclodextrin glucanotransferase.  Enzyme Microb Technol. 1998;  22 678-686
  • 19 Zhu B R, Shi Z Q, He B L. The progress in the study on the property, applications and Immobilization of cyclodextrin glycosyltransferase.  Amino Acids Biotic Res. 1997;  19 36-39
  • 20 Shimoda K, Hara T, Hamada H, Hamada H. Synthesis of curcumin β-maltooligosaccharides through biocatalytic glycosylation with Strophanthus gratus cell culture and cyclodextrin glucanotransferase.  Tetrahedron Lett. 2007;  48 4029-4032
  • 21 Nakano H, Kiso T, Okamoto K, Tomita T, Manan M B A, Kitahata S. Synthesis of glycosyl glycerol by cyclodextrin glucanotransferases.  J Biosci Bioeng. 2003;  95 583-588
  • 22 Martín M T, Cruces M A, Alcalde M, Plou F J, Bernabé M, Antonio B. Synthesis of maltooligosyl fructofuranosides catalyzed by immobilized cyclodextrin glucosyltransferase using starch as donor.  Tetrahedron. 2004;  60 529-534
  • 23 Fu Y L, Yu Z Y, Tang X M, Zhao Y, Yuan X L, Wang S, Ms B P, Cong Y W. Pennogenin glycosides with a spirostanol structure are strong platelet agonists: structural requirement for activity and mode of platelet agonist synergism.  J Thromb Haemost. 2008;  6 524-533
  • 24 Zhao Y, Kang L P, Liu Y X, Liang Y G, Tan D W, Yu Z Y, Cong Y W, Ma B P. Steroidal saponins from the rhizome of Paris polyphylla and their cytotoxic activities.  Planta Med. 2009;  75 356-363
  • 25 Ma B P, Dong J X, Wang B J, Yan X Z. Studies on the furostanol saponins from Anemarrhena asphodeloides Bunge.  Acta Pharm Sin. 1996;  31 271-277
  • 26 Zhao Y, Kang L P, Liu Y X, Zhao Y, Xiong C Q, Ma B P. Three new steroidal saponins from the rhizome of Paris polyphylla.  Magn Reson Chem. 2007;  45 739-744
  • 27 Dini I, Tenore G C, Trimarco E, Dini A. Furostanol saponins in Allium caepa L. Var. tropeana seeds.  Food Chem. 2005;  93 205-214
  • 28 Agrawal P K. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides.  Phytochemistry. 1992;  31 3307-3330
  • 29 Singh S B, Thakur R S. Plant saponins. Part 3. Costusoside-I and costusoside-J, two new furostanol saponins from the seeds of Costus speciosus.  Phytochemistry. 1982;  21 911-915
  • 30 Hirai Y, Sanada S, Ida Y, Shoji J. Studies on the constituents of Palmae plants III. The constituents of Chamaerops humilis L. and Trachycarpus wagnerianus BECC.  Chem Pharm Bull. 1986;  34 82-87
  • 31 Agrawal P K, Jain D C, Gupta R K, Thakur R S. Carbon-13 NMR spectroscopy of steroidal sapogenins and steroidal saponins.  Phytochemistry. 1985;  24 2479-2496
  • 32 Husáková L, Riva S, Casali M, Nicotra S, Kuzma M, Hunková Z, Kren V. Enzymatic glycosylation using 6-O-acylated sugar donors and acceptors: β-N-acetylhexosaminidase-catalysed synthesis of 6-O,N,N'-triacetylchitobiose and 6′-O,N,N'-triacetylchitobiose.  Carbohydr Res. 2001;  331 143-148
  • 33 Feng B, Kang L P, Ma B P, Quan B, Zhou W B, Wang Y Z, Zhao Y, Liu Y X, Wang S Q. The substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata.  Tetrahedron. 2007;  63 6796-6812

1 These authors contributed equally to this study.

Prof. Dr. Bai-ping Ma

Beijing Institute of Radiation Medicine

27# Tai-ping Road

Hai-dian District

Beijing 100850

People's Republic of China

Phone: + 86 10 68 21 00 77 ext. 93 02 65

Fax: + 86 10 68 21 46 53

Email: mabaiping@sina.com

>