Planta Med 2010; 76(15): 1717-1723
DOI: 10.1055/s-0030-1249958
Natural Product Chemistry
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Antiarol Cinnamate and Africanoside, a Cinnamoyl Triterpene and a Hydroperoxy-cardenolide from the Stem Bark of Antiaris africana

Bertin Vouffo1 , 2 , Etienne Dongo2 , Petrea Facey1 , Andrea Thorn3 , George Sheldrick3 , Armin Maier4 , Heinz Herbert Fiebig4 , Hartmut Laatsch1
  • 1Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
  • 2Department of Organic Chemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
  • 3Department of Inorganic Chemistry, University of Göttingen, Göttingen, Germany
  • 4Oncotest GmbH, Freiburg, Germany
Further Information

Publication History

received October 28, 2009 revised April 9, 2010

accepted April 20, 2010

Publication Date:
08 June 2010 (online)

Abstract

From the methanol extract of the stem bark of the African tree Antiaris africana Engler, two new bioactive metabolites were isolated, namely, the α-amyrin derivative 1β,11α-dihydroxy-3β-cinnamoyl-α-amyrin (antiarol cinnamate, 1) and a cardiac glycoside, 3β-O-(α-L-rhamnopyranosyl)-14β-hydroperoxy-5β-hydroxy-19-oxo-17β-card-20(22)-enolide (africanoside, 2a), together with the known compounds β-amyrin and its acetate, β-sitosterol and its 3-O-β-D-glucopyranoside, friedelin, ursolic and oleanolic acid, 19-norperiplogenin, strophanthidol, strophanthidinic acid, periplogenin (3a), 3-epiperiplogenin, strophanthidin (3b) and 3,3′-dimethoxy-4′-O-β-D-xylopyronosyl-ellagic acid. Their structures were established on the basis of their spectroscopic data and by chemical methods, while 3a was additionally confirmed by X‐ray crystal structure analysis. The aglycone moiety possessing a hydroperoxy group was found for the first time in cardenolides. Compounds 1 and 2a showed no activity against bacteria, fungi, and microalgae; however, the crude extract exhibited a high toxicity against Artemia salina and a selective antitumor activity against human tumor cell lines. Africanoside (2a) effected a concentration-dependent inhibition of tumor cell growth with a mean IC50 value of 5.3 nM.

References

  • 1 Berg C C, Hijman M E E, Weerdenburg J C A. Flore du Cameroun: Moracées. Paris; Muséum National d'Histoire Naturelle, Laboratoire de Phanérogamie 1985: 104-110
  • 2 Berhaut J. Flore illustrée du Sénégal: Dicotylédones, Tome VI: Linacées à Nymphéacées. Dakar; Ministère du Développement Rural et de l'Hydraulique 1979: 402-405
  • 3 Okogun I J, Spiff A I, Ekong D E U. Triterpenoids and betaines from the latex and bark of Antiaris africana.  Phytochemistry. 1976;  15 826-827
  • 4 Esuoso K O, Lutz H, Kutubuddin M. Unsaponifiable lipid constituents of some underutilized tropical seed oils.  J Agric Food Chem. 2000;  48 231-234
  • 5 Biabani M A F, Baake M, Lovisetto B, Laatsch H, Helmke E, Weyland H. Anthranilamides: new antimicroalgal active substance from a marine Streptomyces sp.  J Antibiot. 1998;  51 333-340
  • 6 Solis P N, Wright C W, Anderson M M, Gupta M P, Phillipson J D. A microwell cytotoxicity assay using Artemia salina (brine shrimp).  Planta Med. 1993;  59 250-252
  • 7 Duracková Z, Betina V, Horniková B, Nemec P. Toxicity of mycotoxins and other fungal metabolites to Artemia salina larvae.  Zentralbl Bakteriol Abt II. 1977;  132 294-299
  • 8 Dengler W A, Schulte J, Berger D P, Mertelsmann R, Fiebig H H. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays.  Anticancer Drugs. 1995;  6 522-532
  • 9 Sheldrick G M. A short history of SHELX.  Acta Crystallogr. 2008;  A64 112-122
  • 10 Flack H D. On enantiomorph-polarity estimation.  Acta Crystallogr. 1983;  A39 876-881
  • 11 Wood A C, Lee K, Vaisberg J A, Kingston I G D, Neto C C, Hammond B G. A bioactive spirolactone iridoid and triterpenoids from Himatanthus sucuuba.  Chem Pharm Bull. 2001;  49 1477-1478
  • 12 Bhattacharyya J, Barros B C. Triterpenoids of Cnidosculus urens.  Phytochemistry. 1986;  25 274-276
  • 13 Mahato B S, Kundu P A. 13C NMR spectra of pentacyclic triterpenoids – a compilation and some salient features.  Phytochemistry. 1994;  37 1517-1575
  • 14 Caceras-Castillo D, Mena-Rejon J G, Cedillo-Rivera R, Quijano L. 21β-Hydroxy-oleanane-type triterpenes from Hippocartea excelsa.  Phytochemistry. 2008;  69 1057-1064
  • 15 Topçu G, Ulubelen A. Triterpenoids from Salvia kronenburgii.  J Nat Prod. 1999;  62 1605-1608
  • 16 Agrawal P K. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides.  Phytochemistry. 1992;  31 3307-3330
  • 17 Schenk B, Junior P, Wichtl M. Cannogenol-3-O-α-L-rhamnosid und cannogenol-3-O-β-D-allomethylosid, zwei neue Cardenolidglykoside aus Convallaria majalis.  Planta Med. 1980;  40 1-11
  • 18 Robien W, Kopp B, Schabl D, Schwarz H. Carbon-13 NMR spectroscopy of cardenolides and bufadienolides.  Prog NMR Spectrosc. 1987;  19 131-181
  • 19 Iida T, Ogawa S, Hosoi K, Makino M, Fujimoto Y, Goto T, Hofmann A F. Regioselective oxyfunctionalization of unactivated carbons in steroids by a model of cytochrome P-450: osmium porphyrin complex/tert-butyl hydroperoxide system.  J Org Chem. 2007;  72 823-830
  • 20 Dang H-S, Davies A G. Ene reactions of allylically stannylated cholestenes: singlet oxygenation of 7α-triphenylstannylcholest-5-en-3β-ol, and of 7α-triphenylstannyl- and 7α-tributylstannyl-cholest-5-ene-3-one, and the rearrangement of 5α-tributylstannylperoxy-3β-benzoyloxycholest-6-ene and of 7α-tributylstannylperoxy-3β-benzoyloxycholest-5-ene.  J Chem Soc [Perkin II]. 1992;  1095-1101
  • 21 Patra A, Chaudhuri S K. Assignment of carbon-13 nuclear magnetic resonance spectra of some friedelanes.  Magn Reson Chem. 1987;  25 95-100
  • 22 Kuo Y-H, Chiang Y-M. Six new ursane- and oleanane-type triterpenes from the arial roots of Ficus microcarpa.  Chem Pharm Bull. 2000;  48 593-596
  • 23 Knight S A. Carbon-13 NMR spectra of some tetra- and pentacyclic triterpenoids.  Org Magn Reson. 1974;  6 603-611
  • 24 Kovganko N V, Kashkan Z N, Borisov E V, Batura E V. 13C NMR spectra of β-sitosterol derivatives with oxidised rings A and B.  Chem Nat Comp. 1999;  35 646-649
  • 25 Ageta H, Arai Y, Suzuki H, Kiyotani T, Kitabayashi M. NMR spectra of triterpenoids. III. Oleanenes and migrated oleanenes.  Chem Pharm Bull. 1995;  43 198-203
  • 26 Seebacher W, Simic N, Weis R, Saf R, Kunert O. Complete assignment of 1H and 13C NMR resonances of oleanolic acid, 18-α-oleanolic acid, ursolic acid and their 11-oxo derivatives.  Magn Reson Chem. 2003;  41 636-638
  • 27 Makarevich I F, Dikan L N. 19-Norcardenolides.  Chem Nat Comp. 1985;  21 67-71
  • 28 Li X-C, Elsohly HN, Hufford CD, Clark AM. NMR assignments of ellagic acid derivative.  Magn Reson Chem. 1999;  37 856-859
  • 29 Gilardi R D, Flippen J L. The crystal structure of strophantidin, a cardioactive steroide, C23H23O6 · œH2O.  Acta Crystallogr. 1973;  B29 1842-1848
  • 30 Hoehne E, Seidel I. Neubestimmung der Laktonringkonformation in der Kristallstruktur des Strophantidin C23H23O6 · œH2O.  J Prakt Chem. 1978;  320 151-156

Prof. Dr. Hartmut Laatsch

Institute for Organic and Biomolecular Chemistry
Georg-August-University Göttingen

Tammannstrasse 2

37077 Göttingen

Germany

Phone: + 49 5 51 39 32 11

Fax: + 49 5 51 39 96 60

Email: hlaatsc@gwdg.de

>