Abstract
Lignans in higher plants represent an ideal class of natural products to be investigated for the origin of stereochemical diversity since chiral lignans occur in pure enantiomeric form as well as in enantiomeric mixtures. Seeds of Linum usitatissimum contain 8S, 8′S-(+)- and 8R, 8′R-(−)-secoisolariciresinol [SS-(+)- and RR-(−)-secoisolariciresinol, respectively] as diglucosides (SS- and RR-secoisolariciresinol diglucosides) whereas aerial parts of flowering L. usitatissimum accumulate only lignans derived from RR-(−)-secoisolariciresinol. Pinoresinol-lariciresinol reductase (PLR) catalyzes two early steps in lignan biosynthesis. Up to now, only a cDNA encoding a PLR (PLR‐Lu1 ) which is enantiospecific for the conversion of 8S, 8′S-(−)-pinoresinol (SS-pinoresinol) via 8S, 8′S-(−)-lariciresinol (SS-lariciresinol) to SS-(+)-secoisolariciresinol was cloned. Here we present the cloning of a cDNA encoding a RR-pinoresinol-RR-lariciresinol reductase (PLR‐Lu2 ) from the leaves of L. usitatissimum which converts only RR-pinoresinol to RR-secoisolariciresinol. In leaves and stems of L. usitatissimum accumulating the 8R, 8′R-enantiomers of lignans, only PLR‐Lu2 was transcriptionally active. Both PLR‐Lu1 and PLR‐Lu2 transcripts were observed in seeds and contribute to the synthesis of SS- and RR-secoisolariciresinol, respectively. Thus, the enantiomeric composition of lignans in the organs of L. usitatissimum appears to be determined by the relative action of two PLRs with opposite enantiospecificities rather than by a single enzyme of low enantiospecificity.
Key words
lignin -
Linum
- Linaceae - HPLC/UV/MS/CD - pinoresinol‐lariciresinol reductase - stereochemistry
References
1
Moss G P.
Nomenclature of lignans and neolignans (IUPAC Recommendations 2000).
Pure Appl Chem.
2000;
72
1493-1523
2
Westcott N D, Muir A D.
Flax seed lignan in disease prevention and health promotion.
Phytochem Rev.
2003;
2
401-417
3
Umezawa T.
Diversity in lignan biosynthesis.
Phytochem Rev.
2003;
2
371-390
4
Davin L B, Bedgar D L, Katayama T, Lewis N G.
On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol.
Phytochemistry.
1990;
31
3869-3874
5
Davin L B, Wang H-B, Crowell A L, Bedgar D L, Martin D M, Sarkanen S, Lewis N G.
Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center.
Science.
1997;
275
362-366
6
Gang D R, Costa M A, Fujita M, Dinkova-Kostova A T, Wang H-B, Burlat V, Martin W, Sarkanen S, Davin L B, Lewis N G.
Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis.
Chem Biol.
1999;
6
143-151
7
Xia Z-Q, Costa M A, Péllisier H, Davin L B, Lewis N G.
Secoisolariciresinol dehydrogenase purification, cloning and functional expression.
J Biol Chem.
2001;
276
12614-12623
8
Dinkova-Kostova A T, Gang D R, Davin L B, Bedgar D L, Chu A, Lewis N G.
(+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia .
J Biol Chem.
1996;
271
29473-29482
9
Fujita M, Gang D R, Davin L B, Lewis N G.
Recombinant pinoresinol-lariciresinol reductases from Western Red Cedar (Thuja plicata ) catalyze opposite enantiospecific conversions.
J Biol Chem.
1999;
274
618-627
10
Suzuki S, Umezawa T, Shimada M.
Stereochemical diversity in lignan biosynthesis of Arctium lappa L.
Biosci Biotechnol Biochem.
2002;
66
1262-1269
11
Nakatsubo T, Mizutani M, Suzuki S, Hattori T, Umezawa T.
Characterisation of Arabidopsis pinoresinol reductase, a new type of enzyme involved in lignin biosynthesis.
J Biol Chem.
2008;
283
15550-15557
12
Hemmati S, Schmidt T J, Fuss E.
(+)-pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B.
FEBS Lett.
2007;
581
603-610
13
Ford J D, Huang K-S, Wang H B, Davin L B, Lewis N G.
Biosynthetic pathway to the cancer chemopreventive secoisolariciresinol diglucoside-hydroxymethylglutaryl ester-linked lignan oligomers in flax (Linum usitatissimum ) seed.
J Nat Prod.
2001;
64
1388-1397
14
Sicilia T, Niemeyer H B, Honig D M, Metzler M.
Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds.
J Agric Food Chem.
2003;
51
1181-1188
15
von Heimendahl C B I, Schäfer K M, Eklund P, Sjöholm R, Schmidt T J, Fuss E.
Pinoresinol-lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum .
Phytochemistry.
2005;
66
1254-1263
16
Schmidt T J, Hemmati S, Fuss E, Alfermann A W.
A combined HPLC-UV and HPLC-MS method for the identification of lignans and its application to the lignans of Linum usitatissimum L. and L. bienne Mill.
Phytochem Anal.
2006;
17
299-311
17
Umezawa T, Davin L B, Lewis N G.
Formation of the lignan, (−)-secoisolariciresinol, by cell free extracts of Forsythia intermedia .
Biochem Biophys Res Commun.
1990;
171
1008-1014
18
Umezawa T, Kuroda H, Isohata T, Higuchi T, Shimada M.
Enantioselective lignan synthesis by cell-free extracts of Forsythia koreana .
Biosci Biotechnol Biochem.
1994;
58
230-234
19
Kumar S, Tamura K, Nei M.
Integrated software for molecular evolutionary genetics analysis and sequence alignment.
Brief Bioinform.
2004;
5
150-163
20
Bayindir Ü, Alfermann A W, Fuss E.
Hinokinin biosynthesis in Linum corymbulosum Reichenb.
Plant J.
2008;
55
810-820
21
Katayama T, Davin L B, Chu A, Lewis N G.
Novel benzylic ether reductions in lignan biogenesis in Forsythia intermedia .
Phytochemistry.
1993;
33
581-591
22
Schmidt T J, Alfermann A W, Fuss E.
HPLC-MS identification of dibenzylbutyrolactone-type lignans: insights into ESI-MS/MS fragmentation of lign-7-eno-9,9′-lactones and application to the lignans of Linum usitatissimum L. (common flax).
Rapid Commun Mass Spectrom.
2008;
22
3642-3650
23
Eliasson C, Kamal-Eldin A, Andersson R, Åman P.
High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction.
J Chromatogr A.
2003;
1012
151-159
24
Davin L B, Lewis N G.
An historical perspective on lignan biosynthesis: monolignol, allyphenol and hydroxycinnamic acid coupling and downstream metabolism.
Phytochem Rev.
2003;
2
257-288
25
Davin L B, Lewis N G.
Dirigent phenoxy radical coupling: advances and challenges.
Curr Opin Biotechnol.
2005;
16
398-406
26
Min T, Kasahara H, Bedgar D L, Youn B, Lawrence P K, Gang D R, Halls S C, Park H, Hilsenbec J L, Davin L B, Lewis N G, Kang C.
Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases.
J Biol Chem.
2003;
278
50714-50723
1 Dedicated to Prof. Dr. Wolfgang Barz on the occasion of his 75th birthday.
Elisabeth Fuss (Molecular biology)
Interfakultäres Institut für Biochemie Universität Tübingen
Hoppe-Seyler-Str. 4
72076 Tübingen
Germany
Phone: +497 07 12 97 33 27
Fax: +49 70 71 29 50 70
Email: elisabeth.fuss@uni-tuebingen.de
Thomas J. Schmidt (Analytical phytochemistry)
Institut für Pharmazeutische Biologie und Phytochemie (IPBP) Westfälische Wilhelms-Universität Münster
Hittorfstraße 56
48149 Münster
Germany
Phone: +49 25 18 33 33 78
Fax: +49 25 18 33 83 41
Email: thomschm@uni-muenster.de