Zusammenfassung
Hintergrund: Wirbelsäulenverletzungen machen immer noch einen hohen Anteil der Verletzungen des Menschen aus. Ein häufig verwendetes Transplantat für die ventrale Stabilisierung frakturierter Wirbelsegmente ist nach wie vor der autologe Knochenspan vom Beckenkamm. Dieses Transplantat hat jedoch eine hohe Entnahmemorbidität; aus diesem Grunde ist die Erforschung von Alternativen wichtig für die Patientenversorgung. Ziel unserer Studie war die Untersuchung des knöchernen Einwachsverhaltens einer kommerziell erhältlichen, bovinen Spongiosa und damit eine Standortbestimmung der klinischen Relevanz dieses Materials. Als Kontrollgruppe verwendeten wir den autologen Beckenkammspan, der zugleich den gegenwärtigen klinischen „Goldstandard“ darstellt. Material und Methoden: Zwei Gruppen mit jeweils 8 erwachsenen (im Median 3 Jahre alt [2,4–3,8]) weiblichen Schafen wurden operativ mit einer ventralen monosegmentalen Spondylodese im Bereich des 3. und 4. Lendenwirbelkörpers operiert. Neben der qualitativen Begutachtung der histologischen Schnitte wurde eine computergestützte bildanalytische Auswertung durchgeführt, um eine quantitative Aussage über die Menge an Knochen sowie den im Umbau befindlichen Knochenanteil machen zu können. Ergebnisse: Die Verteilung des spongiösen Knochens im Bereich des Spanlagers in den Wirbelkörpern in beiden Gruppen war nicht signifikant unterschiedlich. Dies lässt darauf schließen, dass die knöcherne Integration der Späne im Bereich der Wirbelkörper ähnlich erfolgte. Spanfrakturen und verstärkte Resorption der Späne traten vor allem im Bereich des Bandscheibenfachs und häufiger in der Gruppe mit den bovinen Spänen auf. Schlussfolgerung: Das Einwachsverhalten der bovinen Späne im spongiösen Anteil der angrenzenden Wirbelkörper war nicht signifikant schlechter als in der Kontrollgruppe der autologen Beckenkammspäne. Aufgrund der deutlich höheren Fraktur- und Lyserate im Bandscheibenfach stellt das bovine Material jedoch noch keine valide Alternative zum autologen Beckenkammspan dar.
Abstract
Background: Spinal injuries are common and a standard procedure for the stabilisation of spinal injuries is ventral spondylodesis with an autograft from the iliac crest. Because of the high incidence of harvesting complications there is a need to search for alternative materials. The aim of our study was to evaluate graft integration in the lumbar spine of bovine cancellous bone compared to autologous iliac crest material. Material and Methods: Two groups of eight female adult sheep (median age 3 years, range 2.4–3.8 years) received surgical treatment in the form of anterior monosegmental spondylodesis. The spondylodesis was performed in all animals in the motion segment L3/4 through a lateral approach with the animals lying on their right sides. To produce serial sections, the explanted vertebral segments were implanted in methyl methacrylate. On one side the histological preparation was examined qualitatively and in addition we analysed the quantity of the bone structure with special software. Results: The bone structure in both groups did not differ significantly and demonstrated integration of the grafts in the adjacent vertebral bodies. Fractures and lysis occurred in the region of the intervertebral disc and were more frequent in the group with the bovine graft. Conclusion: The bony integration of the grafts of both groups was not significantly different and showed good results. Almost all of the bovine grafts fractured or presented regions of lysis. In our opinion bovine cancellous bone graft is not a good alternative to autologous iliac crest.
Schlüsselwörter
ventrale Spondylodese - Beckenkammspan - Einwachsverhalten - Wirbelsäulenverletzungen
Key words
ventral spondylodesis - autologous iliac crest material - bony integration - spinal injuries
Literatur
1
Bühren V.
Verletzungen der Brust- und Lendenwirbelsäule.
Unfallchirurg.
2003;
106
55-69
2
Gertzbein S D.
Scoliosis Research Society. Multicenter spine fracture study.
Spine.
1992;
17
528-540
3
Kaye J J, Nance Jr. E P.
Thoracic and lumbar spine trauma.
Radiol Clin North Am.
1990;
28
361-377
4
Johansson C, Mellstrom D, Rosengren K et al.
Prevalence of vertebral fractures in 85-year-olds. Radiographic examination of 462 subjects.
Acta Orthop Scand.
1993;
64
25-27
5
Knop C, Blauth M, Bastian L et al.
[Fractures of the thoracolumbar spine. Late results of dorsal instrumentation and its consequences].
Unfallchirurg.
1997;
100
630-639
6
Knop C, Bastian L, Lange U et al.
Complications in surgical treatment of thoracolumbar injuries.
Eur Spine J.
2002;
11
214-226
7
Knop C, Blauth M, Buhren V et al.
[Surgical treatment of injuries of the thoracolumbar transition–3: follow-up examination. Results of a prospective multi-center study by the “Spinal” Study Group of the German Society of Trauma Surgery].
Unfallchirurg.
2001;
104
583-600
8
Been H D, Poolman R W, Ubags L H.
Clinical outcome and radiographic results after surgical treatment of post-traumatic thoracolumbar kyphosis following simple type A fractures.
Eur Spine J.
2004;
13
101-107
9
Been H D.
Anterior decompression and stabilization of thoracolumbar burst fractures by the use of the Slot-Zielke device.
Spine.
1991;
16
70-77
10
Feil J, Worsdorfer O.
[Ventral stabilization in the area of the thoracic and lumbar spine].
Chirurg.
1992;
63
856-865
11
Farcy J P, Weidenbaum M, Glassman S D.
Sagittal index in management of thoracolumbar burst fractures.
Spine.
1990;
15
958-965
12
Daniaux H.
[Transpedicular repositioning and spongioplasty in fractures of the vertebral bodies of the lower thoracic and lumbar spine].
Unfallchirurg.
1986;
89
197-213
13
Leferink V J, Keizer H J, Oosterhuis J K et al.
Functional outcome in patients with thoracolumbar burst fractures treated with dorsal instrumentation and transpedicular cancellous bone grafting.
Eur Spine J.
2003;
12
261-267
14
Josten C, Katscher S, Gonschorek O.
[Treatment concepts for fractures of the thoracolumbar junction and lumbar spine].
Orthopade.
2005;
34
1021-1032
15
Kossmann T, Ertel W, Platz A et al.
[Combined surgery for fractures of the thoraco-lumbar junction using the inlay-span method].
Orthopade.
1999;
28
432-40
16
Marchesi D.
Spinal fusions: bone and bone substitutes.
Eur Spine J.
2000;
9
372-378
17
Paar O, Andereya S, Staatz G et al.
[Value of human recombinant osteogenetic proteins as bone replacement materials in lumbar spondylodesis. Results of an animal experiment study].
Unfallchirurg.
2001;
104
700-709
18
Schultheiss M, Kinzl L, Claes L et al.
Minimally invasive ventral spondylodesis for thoracolumbar fracture treatment: surgical technique and first clinical outcome.
Eur Spine J.
2003;
12
618-624
19
Schultheiss M, Sarkar M, Arand M et al.
Solvent-preserved, bovine cancellous bone blocks used for reconstruction of thoracolumbar fractures in minimally invasive spinal surgery-first clinical results.
Eur Spine J.
2005;
14
192-196
20
Xie Y, Chopin D, Hardouin P et al.
Clinical, radiological and histological study of the failure of cervical interbody fusions with bone substitutes.
Eur Spine J.
2006;
15
1196-1203
21
Kneser U, Schaefer D J, Polykandriotis E et al.
Tissue engineering of bone: the reconstructive surgeon's point of view.
J Cell Mol Med.
2006;
10
7-19
22 Blauth M, Knop C, Bastian L. Brust- und Lendenwirbelsäule. Tscherne H, Blauth M Wirbelsäule. Berlin, Heidelberg; Springer 1998: 241-371
23
Lind M, Bunger C.
Factors stimulating bone formation.
Eur Spine J.
2001;
10 (Suppl. 2)
S102-S109
24
Jager M, Westhoff B, Wild A et al.
[Bone harvesting from the iliac crest].
Orthopade.
2005;
34
976-994
25
Vaccaro A R, Cirello J.
The use of allograft bone and cages in fractures of the cervical, thoracic, and lumbar spine.
Clin Orthop Relat Res.
2002;
394
19-26
26
Ehrler D M, Vaccaro A R.
The use of allograft bone in lumbar spine surgery.
Clin Orthop Relat Res.
2000;
371
38-45
27
Boden S D.
The biology of posterolateral lumbar spinal fusion.
Orthop Clin North Am.
1998;
29
603-619
28
Banwart J C, Asher M A, Hassanein R S.
Iliac crest bone graft harvest donor site morbidity. A statistical evaluation.
Spine.
1995;
20
1055-1060
29
McMurray G N.
The evaluation of Kiel bone in spinal fusions.
J Bone Joint Surg [Br].
1982;
64
101-104
30
Günther K, Scharf H, Pesch H et al.
Osteointegration of solvent-preserved bone transplants in an animal model.
Osteologie.
1996;
5
4-12
31
Kneser U, Stangenberg L, Ohnolz J et al.
Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model.
J Cell Mol Med.
2006;
10
695-707
32
Rueger J M.
[Bone substitution materials. Current status and prospects].
Orthopade.
1998;
27
72-79
33
Ruter A, Lob G.
[Collection of autologous bone transplants].
Orthopade.
1986;
15
10-15
34
Schweiberer L, Eitel F, Betz A.
[Cancellous bone transplantation].
Chirurg.
1982;
53
195-200
35
Dai L.
Low lumbar spinal fractures: management options.
Injury.
2002;
33
579-582
36
Kossmann T, Jacobi D, Trentz O.
The use of a retractor system (SynFrame) for open, minimal invasive reconstruction of the anterior column of the thoracic and lumbar spine.
Eur Spine J.
2001;
10
396-402
37
Spivak J, Hasharoni A.
Use of hydroxyapatite in spine surgery.
Eur Spine J.
2001;
10
S197-S204
38
Albrektsson T, Johansson C.
Osteoinduction, osteoconduction and osseointegration.
Eur Spine J.
2001;
10 (Suppl. 2)
S96-S101
39
Stoltze D, Harms J.
[Correction of posttraumatic deformities. Principles and methods].
Orthopade.
1999;
28
731-745
40
Reinhold M, Knop C, Beisse R et al.
[Operative treatment of traumatic fractures of the thorax and lumbar spine. Part II: surgical treatment and radiological findings].
Unfallchirurg.
2009;
112
149-167
41
Mastrokalos D S, Springer J, Siebold R et al.
Donor site morbidity and return to the preinjury activity level after anterior cruciate ligament reconstruction using ipsilateral and contralateral patellar tendon autograft: a retrospective, nonrandomized study.
Am J Sports Med.
2005;
33
85-93
42
Younger E, Chapman M.
Morbidity of bone graft donor sites.
J Orthop Trauma.
1989;
3
192-195
43
Goulet J A, Senunas L E, DeSilva G L et al.
Autogenous iliac crest bone graft. Complications and functional assessment.
Clin Orthop Relat Res.
1997;
339
76-81
44
Pintar F A, Maiman D J, Hollowell J P et al.
Fusion rate and biomechanical stiffness of hydroxylapatite versus autogenous bone grafts for anterior discectomy. An in vivo animal study.
Spine.
1994;
19
2524-2528
45
Vanderschot P, Caluwe G, Lateur L et al.
The use of ‘hybrid allografts in the treatment of fractures of the thoracolumbar spine: first experience.
Eur Spine J.
2001;
10
64-68
46
Malloy K M, Hilibrand A S.
Autograft versus allograft in degenerative cervical disease.
Clin Orthop Relat Res.
2002;
394
27-38
47
Finkelstein J A, Chapman J R, Mirza S.
Anterior cortical allograft in thoracolumbar fractures.
J Spinal Disord.
1999;
12
424-429
48
Briem D, Rueger J M, Linhart W.
[Osseous integration of autogenous bone grafts following combined dorso-ventral instrumentation of unstable thoracolumbar spine fractures].
Unfallchirurg.
2003;
106
195-203
49
Kaneda K, Taneichi H, Abumi K et al.
Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits.
J Bone Joint Surg [Am].
1997;
79
69-83
50
Saraph V J, Bach C M, Krismer M et al.
Evaluation of spinal fusion using autologous anterior strut grafts and posterior instrumentation for thoracic/thoracolumbar kyphosis.
Spine.
2005;
30
1594-1601
51
Cloward R B.
The treatment of ruptured lumbar intervertebral disc by vertebral body fusion. III. Method of use of banked bone.
Ann Surg.
1952;
136
987-992
52
Munting E, Faundez A, Manche E.
Vertebral reconstruction with cortical allograft: long-term evaluation.
Eur Spine J.
2001;
10 (Suppl. 2)
S153-S157
53
Singh K, DeWald C J, Hammerberg K W et al.
Long structural allografts in the treatment of anterior spinal column defects.
Clin Orthop Relat Res.
2002;
394
121-129
54
An H S, Lynch K, Toth J.
Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen, and mixed grafts.
J Spinal Disord.
1995;
8
131-135
55
Bridwell K H, Lenke L G, McEnery K W et al.
Anterior fresh frozen structural allografts in the thoracic and lumbar spine. Do they work if combined with posterior fusion and instrumentation in adult patients with kyphosis or anterior column defects?.
Spine.
1995;
20
1410-1418
56
Price C T, Connolly J F, Carantzas A C et al.
Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis.
Spine.
2003;
28
793-798
57
Delecrin J, Deschamps C, Romih M et al.
Influence of bone environment on ceramic osteointegration in spinal fusion: comparison of bone-poor and bone-rich sites.
Eur Spine J.
2001;
10 (Suppl. 2)
S110-S113
58
Kwon B, Jenis L G.
Carrier materials for spinal fusion.
Spine J.
2005;
5 (Suppl. 6)
224S-230S
59
Sommerfeldt D W, Rubin C T.
Biology of bone and how it orchestrates the form and function of the skeleton.
Eur Spine J.
2001;
10 (Suppl. 2)
S86-S95
60
Rohlmann A, Zander T, Bergmann G.
Comparison of the biomechanical effects of posterior and anterior spine-stabilizing implants.
Eur Spine J.
2005;
14
445-453
Priv.-Doz. Dr. Peter Christian Strohm
Department für Orthopädie und Traumatologie Klinikum der Albert-Ludwigs-Universität Freiburg
Hugstetter Straße 55
79106 Freiburg
Phone: 07 61/2 70 24 01
Fax: 07 61/2 70 25 20
Email: peter.strohm@uniklinik-freiburg.de