Subscribe to RSS
DOI: 10.1055/s-0030-1250324
© Georg Thieme Verlag KG Stuttgart · New York
Identification of Lonicera japonica and its Related Species Using the DNA Barcoding Method
Publication History
received June 17, 2010
revised July 22, 2010
accepted August 12, 2010
Publication Date:
22 September 2010 (online)
Abstract
To choose a suitable DNA marker to authenticate the botanical origins of Flos Lonicerae Japonicae and Flos Lonicerae, seven candidate DNA bar codes (i.e., rbcL, matK, psbA-trnH, ITS2, ITS, trnL intron, and trnL‐F intergenic spacer) were tested on forty-four samples of Lonicera japonica and its closely related species using the DNA barcoding method. We found that all seven candidate bar codes yielded 100 % PCR amplification efficiency and that the sequencing efficiency of the five other candidate bar codes was 100 %, with the exception of ITS and ITS2. The highest interspecific divergence was provided by the psbA-trnH intergenic spacer, followed by the trnL‐F intergenic spacer based on six parameters and Wilcoxon signed rank tests. Through the inspection of the histograms of the barcoding gap, the distribution of the psbA-trnH intergenic spacer was well separated; and only this candidate DNA bar code possessed the highest species identification efficiency at 100 % by BLAST1 method. In conclusion, using the psbA-trnH intergenic spacer as a DNA bar code is suitable for the identification of the botanical origins of Flos Lonicerae Japonicae and Flos Lonicerae. This study may provide an important example for the authentication of the botanical origin of medicinal herbs listed in the Chinese Pharmacopoeia.
Key words
Lonicera japonica - Lonicera - Caprifoliaceae - molecular identification - DNA barcoding - psbA‐trnH intergenic spacer
- Supporting Information for this article is available online at
- Supporting Information .
References
- 1 Chinese Pharmacopoeia Commission .The Pharmacopoeia of the People's Republic of China, Vol. 1. Beijing; Chemical Industry Press 2010 28-29 205-206
- 2 Geng S L, Xu H H. Research survey of good agriculture practice of Flos Lonicerae. Chin Tradit Herbal Drugs. 2003; 34 F14-17
- 3 Ren M T, Cheng J, Song Y, Sheng L S, Li P, Qi L W. Identification and quantification of 32 bioactive compounds in 4 Lonicera species by high performance liquid chromatography coupled with time-of-flight mass spectrometry. J Pharm Biomed Anal. 2008; 48 1351-1360
- 4 Song Y, Li S L, Wu M H, Li H J, Li P. Qualitative and quantitative analysis of iridoid glycosides in the flower buds of Lonicera species by capillary high performance liquid chromatography coupled with mass spectrometric detector. Anal Chim Acta. 2006; 564 211-218
- 5 Wang C Z, Li P, Ding J Y, Fishbein A, Yung C S. Discrimination of Lonicera japonica THUNB. from different geographical origins using restriction fragment length polymorphism analysis. Biol Pharm Bull. 2007; 30 779-782
- 6 Peng X X, Li W D, Wang W Q, Bai G B. Identification of Lonicera japonica by PCR-RFLP and allele-specific diagnostic PCR based on sequences of internal transcribed spacer regions. Planta Med. 2009; 75 1-3
- 7 Hebert P D N, Cywinska A, Ball S L, DeWaard J R. Biological identification through DNA barcodes. Proc R Soc B Biol Sci. 2003; 270 313-321
- 8 Hebert P D N, Gregory T R. The promise barcoding for taxonomy. Syst Biol. 2005; 54 852-859
- 9 Schindel D E, Miller S E. DNA barcoding, a useful tool for taxonomists. Nature. 2005; 435 17
- 10 Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA. 2008; 105 2923-2928
- 11 Hebert P D N, Ratnasingham S, de Waard J R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci. 2003; 270 (Suppl. 1) S96-S99
- 12 Marshall E. Taxonomy – will DNA barcodes breathe life into classification?. Science. 2005; 307 1037
- 13 Kress W J, Wurdack K J, Zimmer E A, Weigt L A, Janzen D H. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA. 2005; 102 8369-8374
- 14 Kress W J, Erickson D L. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE. 2007; 2 e508
- 15 Newmaster S G, Fazekas A J, Steeves R A D, Janovec J. Testing candidate plant barcode regions in the Myristicaceae. Mol Ecol Res. 2008; 8 480-490
- 16 Song J Y, Yao H, Li Y, Li X W, Lin Y L, Liu C, Han J P, Xie C X, Chen S L. Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique. J Ethnopharmacol. 2009; 124 434-439
- 17 Yao H, Song J Y, Ma X Y, Liu C, Li Y, Xu H X, Han J P, Duan L S, Chen S L. Identification of Dendrobium species by a candidate DNA barcode sequence: the chloroplast psbA-trnH intergenic region. Planta Med. 2009; 75 667-669
- 18 Chen S L, Yao H, Han J P, Liu C, Song J Y, Shi L C, Zhu Y J, Ma X Y, Gao T, Pang X H, Luo K, Li Y, Li X W, Jia X C, Lin Y L, Leon C. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE. 2010; 5 e8613
-
19
Pang X H, Song J Y, Zhu Y J, Xie C X, Chen S L.
Using DNA barcoding to identify species within Euphorbiaceae.
Planta Med.
2010;
DOI: 10.1055/s-0030-1249806
, advance online publication April 8, 2010
- 20 Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 2007; 35 e14
- 21 CBOL Plant Working Group . A DNA barcode for land plants. Proc Natl Acad Sci USA. 2009; 106 12794-12797
- 22 Sass C, Little D P, Stevenson D W, Specht C D. DNA barcoding in the Cycadales: testing the potential of proposed barcoding markers for species identification of Cycads. PLoS ONE. 2007; 2 e1154
- 23 Taberlet P, Gielly T J, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol. 1991; 17 1105-1109
- 24 Wang Y J, Liu J Q. A preliminary investigation on the phylogeny of Saussurea (Asteraceae: Cardueae) based on chloroplast DNA TrnL-F sequences. Acta Phytotaxon Sin. 2004; 42 136-153
- 25 Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22 4673
- 26 Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007; 24 1596-1599
- 27 Meier R, Zhang G Y, Ali F. The use of mean instead of smallest inter-specific distances exaggerates the size of the “Barcoding Gap” and leads to misidentification. Syst Biol. 2008; 57 809-813
- 28 Meyer C P, Paulay G. DNA barcoding: Error rates based on comprehensive sampling. PLoS Biol. 2005; 3 2229-2238
- 29 Ross H A, Murugan S, Li W L S. Testing the reliability of genetic methods of species identification via simulation. Syst Biol. 2008; 57 216-230
- 30 Storchová H, Olson M S. The architecture of the chloroplast psbA-trnH non-coding region in angiosperms. Plant Syst Evol. 2007; 268 235-256
- 31 Quandt D, Müller K, Stech M, Frahm J P, Frey W, Hilu K W, Borsch T. Molecular evolution of the chloroplast trnL-F region in land plants. Monogr Syst Bot Mo Bot Gard. 2004; 98 13-37
- 32 Shaw J, Lickey E B, Schilling E E, Small R L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot. 2007; 94 275-288
Prof. Dr. Shilin Chen
Institute of Medicinal Plant Development
Chinese Academy of Medical Sciences
Peking Union Medical College
151 Malianwa North Road, Haidian District
Beijing 100193
People's Republic of China
Phone: +86 10 62 89 97 00
Fax: +86 10 62 89 97 76
Email: slchen@implad.ac.cn
- www.thieme-connect.de/ejournals/toc/plantamedica