Subscribe to RSS
DOI: 10.1055/s-0030-1252025
© Georg Thieme Verlag KG Stuttgart · New York
Neurones and Synapses for Systemic Models of Psychiatric Disorders
Publication History
Publication Date:
18 May 2010 (online)
Abstract
We propose a mechanism-based modelling approach which brings together the most relevant features of neural dynamics and synaptic transmission for clinically valuable simulations of psychiatric disorders and their pharmaceutical treatment. It is based on a minimal, but physiologically justified concept, which allows to account for a great diversity of neuronal dynamics and synaptic mechanisms. It can simulate ionotropic as well as metabotropic receptors in addition to the effects of eventual co-transmitters and external neuromodulators. The proposed model can mimic the clinically most important aspects of synaptic disturbances, such as impaired transmitter availability or reduced number of postsynaptic receptors, for example due to their internalization as a function of transmitter concentration. It also allows evaluation of the effects of drugs with specific actions such as receptor agonists and antagonists or reuptake inhibitors. It is a major advantage of this physiologically based approach that it can be adjusted to different types of neurons and synapses, and also can be extended to more elaborate physiological situations, e. g. by including additional receptors or ion channels, whenever this is indicated by clinical or experimental data.
References
- 1 Abbott LF, Regehr WG. Synaptic computation. Nature. 2004; 431 ((2010)) 796-803
- 2 Bender W, Albus M, Moller HJ. et al . Towards systemic theories in biological psychiatry. Pharmacopsychiatry. 2006; 39 ((Suppl. 1)) S4-S9
- 3 Braun HA, Huber M, Dewald M. et al . Computer Simulations of neuronal signal transduction: the role of nonlinear dynamics and noise. Int J Bifurcation & Chaos. 1998; 8 881-889
- 4 Braun HA, Schneider H, Wollweber B. et al .cLabs-Neuron (http://www.clabs.de/): Membrane Properties – Conductances.. Marburg: BM&T; 2002
- 5 Braun HA, Voigt K, Huber MT. Oscillations, resonances and noise: basis of flexible neuronal pattern generation. Biosystems. 2003; 71 ((1–2)) 39-50
- 6 Braun HA, Postnova S, Wollweber BT. et al .Biological Rhythms in Mental Disorders.. Biosimulation in Drug Development: Wiley –VCH; 2007: 197-231
- 7 Carlsson A. The neurochemical circuitry of schizophrenia. Pharmacopsychiatry. 2006; 39 (S 01) S10-S14
- 8 Chay TR, Fan YS, Lee YS. Bursting,spiking,chaos,fractals and universality in biological rhythms. Int J Bifurcation and Chaos. 1995; 5 595-635
- 9 Christodoulou C, Bugmann G, Clarkson TG. A spiking neuron model: applications and learning. Neural Netw. 2002; 15 ((7)) 891-908
- 10 Destexhe A, Bal T, McCormick DA. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol. 1996; 76 ((3)) 2049-2070
- 11 Finke C, Vollmer J, Postnova S. et al . Propagation effects of current and conductance noise in a model neuron with subthreshold oscillations. Math Biosci. 2008; 214 ((1–2)) 109-121
- 12 Fitzhugh R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J. 1961; 1 ((6)) 445-466
- 13 Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952; 117 ((4)) 500-544
- 14 Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA. 1982; 79 ((8)) 2554-2558
- 15 Huber MT, Braun HA, Voigt K. et al .Computational properties of intrinsic subthreshold oscillations.. In: Bower J, editor. Computational Neuroscience: Trends in Research. New York: Plenum Press; 1998: 197-202
- 16 Huber MT, Krieg JC, Dewald M. et al . Stochastic encoding in sensory neurons: impulse patterns of mammalian cold receptors. Chaos, Solitons and Fractals. 2000; 11 ((12)) 1895-1903
- 17 Huber MT, Braun HA. Stimulus – response curves of a neuronal model for noisy subthreshold oscillations and related spike generation. Physical Reviews E. 2006; 73, 041929 1-10
- 18 Huber MT, Braun HA. Conductance versus current noise in a neuronal model for noisy subthreshold oscillations and spike generation. Biosystems. 2006; DOI: doi: 10.1016/j.biosystems.2006.1005.1009
- 19 Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw. 2003; 14 ((6)) 1569-1572
- 20 Izhikevich EM, Edelman GM. Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci USA. 2008; 105 ((9)) 3593-3598
- 21 Kandel E, Schwartz J, Jessel T. Principles of Neural Sciences.. New York: Mac Craw Hill; 1991
- 22 Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988; 242 ((4886)) 1654-1664
- 23 Lumer ED, Edelman GM, Tononi G. Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. Cereb Cortex. 1997; 7 ((3)) 207-227
- 24 Modolo J, Henry J, Beuter A. Dynamics of the Subthalamo-pallidal Complex in Parkinson's Disease During Deep Brain Stimulation. J Biol Phys. 2008; 34 ((3–4)) 251-266
- 25 Nestler EJ, Barrot M, DiLeone RJ. et al . Neurobiology of depression. Neuron. 2002; 34 ((1)) 13-25
- 26 Noble D. From the Hodgkin-Huxley axon to the virtual heart. J Physiol. 2007; 580 ((Pt 1)) 15-22
- 27 Noori HR, Jager W. Neurochemical oscillations in the basal ganglia. Bull Math Biol. 2010; 72 ((1)) 133-147
- 28 Phillips AJ, Robinson PA. A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J Biol Rhythms. 2007; 22 ((2)) 167-179
- 29 Postnova S, Voigt K, Braun HA. Neural Synchronization at Tonic-to-Bursting Transitions. J Biol Phys. 2007; 33 ((2)) 129-143
- 30 Postnova S, Wollweber B, Voigt K. Impulse pattern in bi-directionally coupled model neurons of different dynamics. Biosystems. 2007; 89 ((1–3)) 135-142
- 31 Postnova S, Finke C, Jin W. et al . A computational study of the interdependencies between neuronal impulse pattern, noise effects and synchronization. J Physiol Paris. 2009; DOI: doi: 10.1016/j.jphysparis.2009.11.022
- 32 Postnova S, Voigt K, Braun HA. A mathematical model of homeostatic regulation of sleep-wake cycles by hypocretin/orexin. J Biol Rhythms. 2009; 24 ((6)) 523-535
- 33 Postnova S, Voigt K, Braun HA. Modelling the Hypothalamic Control of Thalamic Synchronization along the Sleep-Wake Cycles. Advances in Cognitive Neurodynamics. 2010; 2 in press
- 34 Qi Z, Miller GW, Voit EO. A mathematical model of presynaptic dopamine homeostasis: implications for schizophrenia. Pharmacopsychiatry. 2008; 41 (S 01) S89-S98
- 35 Rolls ET, Loh M, Deco G. et al . Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci. 2008; 9 ((9)) 696-709
- 36 Rulkov NF, Timofeev I, Bazhenov M. Oscillations in large-scale cortical networks: map-based model. J Comput Neurosci. 2004; 17 ((2)) 203-223
- 37 Soto-Trevino C, Thoroughman KA, Marder E. Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks. Nat Neurosci. 2001; 4 ((3)) 297-303
- 38 Tretter F, Gebicke-Haerter PJ, Albus M, Schwegler H. et al . Systems biology and addiction. Pharmacopsychiatry. 2009; 42 (S 01) S11-S31
Correspondence
H. A. Braun
Institute of Physiology
Neurodynamics Group
University of Marburg
Deutschhausstraße 2
35037 Marburg
Germany
Phone: +49/6421/286 2307
Fax: +49/6421/286 6967
Email: braun@staff.uni-marburg.de