RSS-Feed abonnieren
DOI: 10.1055/s-0030-1253395
© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York
Streptozotocin Causes Pancreatic Beta Cell Failure via Early and Sustained Biochemical and Cellular Alterations
Publikationsverlauf
received 17.02.2010
first decision 02.03.2010
accepted 07.04.2010
Publikationsdatum:
21. Mai 2010 (online)

Abstract
The morphological and biochemical changes that occur in the early phase of streptozotocin (STZ)-induced beta cell failure have not been characterized. The pancreas and plasma of rats treated with STZ were processed for morphological and biochemical parameters 1–24 h and 4 weeks after STZ treatment. Marked reduction in body weight was observed as early as 3 h post STZ treatment and hyperglycemia coupled with hypoinsulinaemia appeared in rats 1 h after treatment with STZ. Hyperglycemia, hyperglucagonemia and hypoinsulinemia became permanent 24 h after STZ treatment. The number of insulin-positive cells decreased significantly (p<0.05) at 24 h after STZ treatment with a concomitant increase in the number of glucagon-immunoreactive cells. Electron microscopy showed coalescing of beta cell granules 18 h after STZ treatment. A near to complete degranulation of beta cells settled at 21 h after STZ administration. The pancreatic tissue and plasma levels of adrenaline and noradrenaline increased significantly (p<0.004: pancreatic tissue; p<0.04: plasma) 3 h after STZ treatment and remained high after a reduction at 6 h post STZ treatment. The pancreatic tissue and plasma levels of 5-HIAA decreased significantly (p<0.002 pancreatic tissue; p<0.04: plasma) 1 h after STZ treatment and remained low after a reduction at 6–9 h post STZ treatment. STZ elicited significant dose-dependent increases in insulin secretion from the isolated pancreas. The early changes in catecholamine level may be used in screening and follow-up studies on diabetes mellitus.
Key words
catecholamines - electronmicroscopy - diabetes mellitus - streptozotocin - islet - immunohistochemistry - beta cell failure
References
- 1
Adeghate E.
Distribution of calcitonin-gene-related peptide, neuropeptide-Y, vasoactive intestinal
polypeptide, cholecystokinin-8, substance P and islet peptides in the pancreas of
normal and diabetic rats.
Neuropeptides.
1999a;
33
227-235
MissingFormLabel
- 2
Adeghate E.
Effect of subcutaneous pancreatic tissue transplants on streptozotocin-induced diabetes
in rats. II. Endocrine and metabolic functions.
Tissue Cell.
1999b;
31
73-83
MissingFormLabel
- 3
Adeghate E.
Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy:
a short review.
Mol Cell Biochem.
2004;
261
187-191
MissingFormLabel
- 4
Adeghate E, Ponery A.
Diabetes mellitus influences the degree of colocalization of calcitonin gene-related
peptide with insulin and somatostatin in the rat pancreas.
Pancreas.
2004;
29
311-319
MissingFormLabel
- 5
Adeghate E, Ponery AS, Sheen R.
Streptozotocin-Induced diabetes mellitus is associated with increased pancreatic tissue
levels of noradrenaline and adrenaline in the rat.
Pancreas.
2001;
22
311-316
MissingFormLabel
- 6
Adeghate E, Ponery AS, Pallot DJ. et al .
Distribution of vasoactive intestinal polypeptide, neuropeptide-Y and substance P
and their effects on insulin secretion from the in vitro pancreas of normal and diabetic
rats.
Peptides.
2001;
22
99-107
MissingFormLabel
- 7
Adeghate E, Rashed H, Rajbandari S. et al .
Pattern of distribution of calcitonin gene-related Peptide in the dorsal root ganglion
of animal models of diabetes mellitus.
Ann N Y Acad Sci.
2006;
1084
296-303
MissingFormLabel
- 8
Ahmed I, Adeghate E, Sharma AK. et al .
Effects of Momordica charantia fruit juice on islet morphology in the pancreas of
the streptozotocin-diabetic rat.
Diabetes Res Clin Pract.
1998;
40
145-151
MissingFormLabel
- 9
Al-Shamsi M, Amin A, Adeghate E.
Vitamin E decreases the hyperglucagonemia of diabetic rats.
Ann N Y Acad Sci.
2006;
1084
432-441
MissingFormLabel
- 10
Cameron NE, Cotter MA.
Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation
and free radicals examined using transition metal chelating agents.
J Clin Invest.
1995;
96
1159-1163
MissingFormLabel
- 11
Changrani NR, Chonkar A, Adeghate E. et al .
Effects of streptozotocin-induced type 1 diabetes mellitus on total protein concentrations
and cation contents in the isolated pancreas, parotid, submandibular, and lacrimal
glands of rats.
Ann N Y Acad Sci.
2006;
1084
503-519
MissingFormLabel
- 12
Draper CE, Adeghate EA, Singh J. et al .
Evidence to suggest morphological and physiological alterations of lacrimal gland
acini with ageing.
Exp Eye Res.
1999;
68
265-276
MissingFormLabel
- 13
Ganda OP, Rossini AA, Like AA.
Studies on streptozotocin diabetes.
Diabetes.
1976;
25
595-603
MissingFormLabel
- 14
Ganong WF.
Review of Medical Physiology.
McGraw-Hill Medical;.
22 edition.
2005;
MissingFormLabel
- 15
Greenbaum CJ.
Insulin resistance in type 1 diabetes.
Diabetes Metab Res Rev.
2002;
18
192-200
MissingFormLabel
- 16
Hu Y, Wang Y, Wang L. et al .
Effects of nicotinamide on prevention and treatment of streptozotocin-induced diabetes
mellitus in rats.
Chin Med J (Engl).
1996;
109
819-822
MissingFormLabel
- 17
Junod A, Lambert AE, Stauffacher W. et al .
Diabetogenic action of streptozotocin: relationship of dose to metabolic response.
J Clin Invest.
1969;
48
2129-2139
MissingFormLabel
- 18
Kamal M, Abbasy AJ, Muslemani AA. et al .
Effect of nicotinamide on newly diagnosed type 1 diabetic children.
Acta Pharmacol Sin.
2006;
27
724-727
MissingFormLabel
- 19
Karnowsky MJ.
A formaldehyde-glutaraldehyde fixative of light osmolarity for the use in electron
microscopy.
J Cell Biol.
1965;
27
137A
MissingFormLabel
- 20
Kazura JW, Gandola C, Rodman HR. et al .
Deficient production of the lymphokine eosinophil stimulation promoter in chemically
induced and mutation diabetes mellitus in mice.
J Immunol.
1979;
123
2114-2117
MissingFormLabel
- 21
Kroncke KD, Fehsel K, Sommer A. et al .
Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea
streptozotozin contributes to islet cell DNA damage.
Biol Chem Hoppe Seyler.
1995;
376
179-185
MissingFormLabel
- 22
Lackovic Z, Salkovic M, Kuci Z. et al .
Effect of long-lasting diabetes mellitus on rat and human brain monoamines.
J Neurochem.
1990;
54
143-147
MissingFormLabel
- 23
Lucas PD, Qirbi A.
Tissue noradrenaline and the polyol pathway in experimentally diabetic rats.
Br J Pharmacol.
1989;
97
347-352
MissingFormLabel
- 24
Mahay S, Pariente JA, Lajas AI. et al .
Effects of ageing on morphology, amylase release, cytosolic Ca2+ signals and acyl lipids in isolated rat parotid gland tissue.
Mol Cell Biochem.
2004;
266
199-208
MissingFormLabel
- 25
Matkovics B, Kotorman M, Varga IS. et al .
Oxidative stress in experimental diabetes induced by streptozotocin.
Acta Physiol Hung.
1997;
85
29-38
MissingFormLabel
- 26
Melman A, Bressler RS, Henry DP. et al .
Ultrastructure of human penile erectile tissue in patients with abnormal norepinephrine
content.
Invest Urol.
1981;
19
46-48
MissingFormLabel
- 27
Niu L, Chen T, Wang YY. et al .
Neurochemical phenotypes of endomorphin-2-containing neurons in vagal nodose neurons
of the adult rat.
Neurochem Int.
2009;
55
542-551
MissingFormLabel
- 28
Paulson DJ, Light KE.
Elevation of serum and ventricular norepinephrine content in the diabetic rat.
Res Commun Chem Pathol Pharmacol.
1981;
33
559-562
MissingFormLabel
- 29
Rossini AA, Like AA, Chick WL. et al .
Studies of streptozotocin-induced insulitis and diabetes.
Proc Natl Acad Sci USA.
1977;
74
2485-2489
MissingFormLabel
- 30
Saiki O, Negoro S, Tsuyuguchi I. et al .
Depressed immunological defence mechanisms in mice with experimentally induced diabetes.
Infect Immun.
1980;
28
127-131
MissingFormLabel
- 31
Schein PS, Cooney DA, McMenamin MG. et al .
Streptozotocin diabetes – further studies on the mechanism of depression of nicotinamide
adenine dinucleotide concentrations in mouse pancreatic islets and liver.
Biochem Pharmacol.
1973;
22
2625-2631
MissingFormLabel
- 32
Schnedl WJ, Ferber S, Johnson JH. et al .
STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells.
Diabetes.
1994;
43
1326-1333
MissingFormLabel
- 33
Shetty R, Saeed T, Rashed H. et al .
Effect of diabetes mellitus on acinar morphology, peroxidase concentration, and release
in isolated rat lacrimal glands.
Curr Eye Res.
2009;
34
905-911
MissingFormLabel
- 34
Tuch BE, Turtle JR, Simeonovic CJ.
Streptozotocin is not toxic to the human fetal B cell.
Diabetologia.
1989;
32
678-684
MissingFormLabel
- 35
Yamamoto H, Uchigata Y, Okamoto H.
Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase
in pancreatic islets.
Nature.
1981;
294
284-286
MissingFormLabel
- 36
Zamboni L, de Martino C.
Buffered picric acid-formaldehyde: a new rapid fixation for electron microscopy.
J Cell Biol.
1967;
35
148A
MissingFormLabel
Correspondence
E. AdeghateMD, PhD
Professor
Department of Anatomy
Faculty of Medicine & Health
Sciences
United Arab Emirates University
P. O. Box 17666, Al Ain
United Arab Emirates
Fax: 971/3/672 033
eMail: eadeghate@uaeu.ac.ae