Semin Thromb Hemost 2010; 36(3): 246-264
DOI: 10.1055/s-0030-1253448
© Thieme Medical Publishers

Heterogeneity in Endothelial Responsiveness to Cytokines, Molecular Causes, and Pharmacological Consequences

Grietje Molema1
  • 1Department Pathology & Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
Further Information

Publication History

Publication Date:
20 May 2010 (online)

ABSTRACT

Microvascular endothelial cells play an essential role in inflammatory diseases. Functional heterogeneity between microvascular segments in normal organ homeostasis has been appreciated for a long time, and more recent studies have revealed heterogeneity in endothelial reactivity to inflammatory stimuli as well. This review summarizes the state-of-the-art knowledge regarding endothelial cell responses to the proinflammatory cytokines tumor necrosis factor α, interleukin-1β, and the bacterial product lipopolysaccharide. It focuses on similarities and differences in reactivity between endothelial cell subsets in vitro and endothelial cells in their pathophysiological environment in vivo, and culminates into a mainly theoretical model of possible intracellular control mechanisms that can assist to ultimately explain the molecular causes of endothelial heterogeneity. The last part of this review contains some pharmacological considerations, and, with the aim to further unravel the molecular basis of in vivo endothelial heterogeneity, descriptions of new techniques that will be essential to achieve this.

REFERENCES

  • 1 Aird W C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms.  Circ Res. 2007;  100(2) 158-173
  • 2 Wang S, Voisin M B, Larbi K Y et al.. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils.  J Exp Med. 2006;  203(6) 1519-1532
  • 3 Lowenstein C J, Morrell C N, Yamakuchi M. Regulation of Weibel-Palade body exocytosis.  Trends Cardiovasc Med. 2005;  15(8) 302-308
  • 4 Zarbock A, Polanowska-Grabowska R K, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation.  Blood Rev. 2007;  21(2) 99-111
  • 5 Hidalgo A, Chang J, Jang J E, Peired A J, Chiang E Y, Frenette P S. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury.  Nat Med. 2009;  15(4) 384-391
  • 6 Pober J S, Sessa W C. Evolving functions of endothelial cells in inflammation.  Nat Rev Immunol. 2007;  7(10) 803-815
  • 7 Wittchen E S. Endothelial signaling in paracellular and transcellular leukocyte transmigration.  Front Biosci. 2009;  14 2522-2545
  • 8 Bradley J R, Thiru S, Pober J S. Disparate localization of 55-kd and 75-kd tumor necrosis factor receptors in human endothelial cells.  Am J Pathol. 1995;  146(1) 27-32
  • 9 Al-Lamki R S, Wang J, Skepper J N, Thiru S, Pober J S, Bradley J R. Expression of tumor necrosis factor receptors in normal kidney and rejecting renal transplants.  Lab Invest. 2001;  81(11) 1503-1515
  • 10 Al-Lamki R S, Brookes A P, Wang J et al.. TNF receptors differentially signal and are differentially expressed and regulated in the human heart.  Am J Transplant. 2009;  9(12) 2679-2696
  • 11 Ermert M, Pantazis C, Duncker H R, Grimminger F, Seeger W, Ermert L. In situ localization of TNFalpha/beta, TACE and TNF receptors TNF-R1 and TNF-R2 in control and LPS-treated lung tissue.  Cytokine. 2003;  22(3-4) 89-100
  • 12 Chandrasekharan U M, Siemionow M, Unsal M et al.. Tumor necrosis factor alpha (TNF-alpha) receptor-II is required for TNF-alpha-induced leukocyte-endothelial interaction in vivo.  Blood. 2007;  109(5) 1938-1944
  • 13 Collins T, Read M A, Neish A S, Whitley M Z, Thanos D, Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers.  FASEB J. 1995;  9(10) 899-909
  • 14 May M J, Wheeler-Jones C P, Houliston R A, Pearson J D. Activation of p42mapk in human umbilical vein endothelial cells by interleukin-1 alpha and tumor necrosis factor-alpha.  Am J Physiol. 1998;  274(3 Pt 1) C789-C798
  • 15 Surapisitchat J, Hoefen R J, Pi X, Yoshizumi M, Yan C, Berk B C. Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: inhibitory crosstalk among MAPK family members.  Proc Natl Acad Sci U S A. 2001;  98(11) 6476-6481
  • 16 Madge L A, Pober J S. A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFkappaB in human endothelial cells.  J Biol Chem. 2000;  275(20) 15458-15465
  • 17 Zhang L, Himi T, Morita I, Murota S. Inhibition of phosphatidylinositol-3 kinase/Akt or mitogen-activated protein kinase signaling sensitizes endothelial cells to TNF-alpha cytotoxicity.  Cell Death Differ. 2001;  8(5) 528-536
  • 18 Chen X L, Zhang Q, Zhao R, Ding X, Tummala P E, Medford R M. Rac1 and superoxide are required for the expression of cell adhesion molecules induced by tumor necrosis factor-alpha in endothelial cells.  J Pharmacol Exp Ther. 2003;  305(2) 573-580
  • 19 De Palma C, Meacci E, Perrotta C, Bruni P, Clementi E. Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium.  Arterioscler Thromb Vasc Biol. 2006;  26(1) 99-105
  • 20 Pincheira R, Castro A F, Ozes O N, Idumalla P S, Donner D B. Type 1 TNF receptor forms a complex with and uses Jak2 and c-Src to selectively engage signaling pathways that regulate transcription factor activity.  J Immunol. 2008;  181(2) 1288-1298
  • 21 Viemann D, Goebeler M, Schmid S et al.. Transcriptional profiling of IKK2/NF-kappa B- and p38 MAP kinase-dependent gene expression in TNF-alpha-stimulated primary human endothelial cells.  Blood. 2004;  103(9) 3365-3373
  • 22 Dejana E, Orsenigo F, Lampugnani M G. The role of adherens junctions and VE-cadherin in the control of vascular permeability.  J Cell Sci. 2008;  121(Pt 13) 2115-2122
  • 23 Nwariaku F E, Liu Z, Zhu X et al.. NADPH oxidase mediates vascular endothelial cadherin phosphorylation and endothelial dysfunction.  Blood. 2004;  104(10) 3214-3220
  • 24 Dejana E, Tournier-Lasserve E, Weinstein B M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications.  Dev Cell. 2009;  16(2) 209-221
  • 25 Nwariaku F E, Chang J, Zhu X et al.. The role of p38 map kinase in tumor necrosis factor-induced redistribution of vascular endothelial cadherin and increased endothelial permeability.  Shock. 2002;  18(1) 82-85
  • 26 Petrache I, Birukova A, Ramirez S I, Garcia J G, Verin A D. The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability.  Am J Respir Cell Mol Biol. 2003;  28(5) 574-581
  • 27 Lambeng N, Wallez Y, Rampon C et al.. Vascular endothelial-cadherin tyrosine phosphorylation in angiogenic and quiescent adult tissues.  Circ Res. 2005;  96(3) 384-391
  • 28 Gao B, Curtis T M, Blumenstock F A, Minnear F L, Saba T M. Increased recycling of (alpha)5(beta)1 integrins by lung endothelial cells in response to tumor necrosis factor.  J Cell Sci. 2000;  113(Pt 2) 247-257
  • 29 You B, Jiang Y Y, Chen S, Yan G, Sun J. The orphan nuclear receptor Nur77 suppresses endothelial cell activation through induction of IkappaBalpha expression.  Circ Res. 2009;  104(6) 742-749
  • 30 Liu M, Kluger M S, D'Alessio A, García-Cardeña G, Pober J S. Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context.  Am J Pathol. 2008;  172(4) 1088-1099
  • 31 Bandyopadhyay S, Ashraf M Z, Daher P, Howe P H, DiCorleto P E. HOXA9 participates in the transcriptional activation of E-selectin in endothelial cells.  Mol Cell Biol. 2007;  27(12) 4207-4216
  • 32 Trivedi C M, Patel R C, Patel C V. Homeobox gene HOXA9 inhibits nuclear factor-kappa B dependent activation of endothelium.  Atherosclerosis. 2007;  195(2) e50-e60
  • 33 Fiedler U, Reiss Y, Scharpfenecker M et al.. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation.  Nat Med. 2006;  12(2) 235-239
  • 34 Eligini S, Barbieri S S, Cavalca V et al.. Diversity and similarity in signaling events leading to rapid Cox-2 induction by tumor necrosis factor-alpha and phorbol ester in human endothelial cells.  Cardiovasc Res. 2005;  65(3) 683-693
  • 35 Kumar A, Lin Z, SenBanerjee S, Jain M K. Tumor necrosis factor alpha-mediated reduction of KLF2 is due to inhibition of MEF2 by NF-kappaB and histone deacetylases.  Mol Cell Biol. 2005;  25(14) 5893-5903
  • 36 Trickler W J, Mayhan W G, Miller D W. Brain microvessel endothelial cell responses to tumor necrosis factor-alpha involve a nuclear factor kappa B (NF-kappaB) signal transduction pathway.  Brain Res. 2005;  1048(1-2) 24-31
  • 37 Puri K D, Doggett T A, Douangpanya J et al.. Mechanisms and implications of phosphoinositide 3-kinase delta in promoting neutrophil trafficking into inflamed tissue.  Blood. 2004;  103(9) 3448-3456
  • 38 Hipp M S, Urbich C, Mayer P et al.. Proteasome inhibition leads to NF-kappaB-independent IL-8 transactivation in human endothelial cells through induction of AP-1.  Eur J Immunol. 2002;  32(8) 2208-2217
  • 39 Cheng N, Chen J. Tumor necrosis factor-alpha induction of endothelial ephrin A1 expression is mediated by a p38 MAPK- and SAPK/JNK-dependent but nuclear factor-kappa B-independent mechanism.  J Biol Chem. 2001;  276(17) 13771-13777
  • 40 Rahman A, Anwar K N, Malik A B. Protein kinase C-zeta mediates TNF-alpha-induced ICAM-1 gene transcription in endothelial cells.  Am J Physiol Cell Physiol. 2000;  279(4) C906-C914
  • 41 Terry C M, Clikeman J A, Hoidal J R, Callahan K S. TNF-alpha and IL-1alpha induce heme oxygenase-1 via protein kinase C, Ca2 + , and phospholipase A2 in endothelial cells.  Am J Physiol. 1999;  276(5 Pt 2) H1493-H1501
  • 42 Hashimoto S, Matsumoto K, Gon Y et al.. p38 Mitogen-activated protein kinase regulates IL-8 expression in human pulmonary vascular endothelial cells.  Eur Respir J. 1999;  13(6) 1357-1364
  • 43 Goebeler M, Kilian K, Gillitzer R et al.. The MKK6/p38 stress kinase cascade is critical for tumor necrosis factor-alpha-induced expression of monocyte-chemoattractant protein-1 in endothelial cells.  Blood. 1999;  93(3) 857-865
  • 44 Rahman A, Kefer J, Bando M, Niles W D, Malik A B. E-selectin expression in human endothelial cells by TNF-alpha-induced oxidant generation and NF-kappaB activation.  Am J Physiol. 1998;  275(3 Pt 1) L533-L544
  • 45 Ahmad M, Theofanidis P, Medford R M. Role of activating protein-1 in the regulation of the vascular cell adhesion molecule-1 gene expression by tumor necrosis factor-alpha.  J Biol Chem. 1998;  273(8) 4616-4621
  • 46 Stuhlmeier K M, Kao J J, Bach F H. Arachidonic acid influences proinflammatory gene induction by stabilizing the inhibitor-kappaBalpha/nuclear factor-kappaB (NF-kappaB) complex, thus suppressing the nuclear translocation of NF-kappaB.  J Biol Chem. 1997;  272(39) 24679-24683
  • 47 Spiecker M, Peng H B, Liao J K. Inhibition of endothelial vascular cell adhesion molecule-1 expression by nitric oxide involves the induction and nuclear translocation of IkappaBalpha.  J Biol Chem. 1997;  272(49) 30969-30974
  • 48 Pietersma A, Tilly B C, Gaestel M et al.. p38 mitogen activated protein kinase regulates endothelial VCAM-1 expression at the post-transcriptional level.  Biochem Biophys Res Commun. 1997;  230(1) 44-48
  • 49 Paleolog E M, Delasalle S A, Buurman W A, Feldmann M. Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells.  Blood. 1994;  84(8) 2578-2590
  • 50 Leeuwenberg J F, van Tits L J, Jeunhomme T M, Buurman W A. Evidence for exclusive role in signalling of tumour necrosis factor p55 receptor and a potentiating function of p75 receptor on human endothelial cells.  Cytokine. 1995;  7(5) 457-462
  • 51 Nadjar A, Combe C, Layé S et al.. Nuclear factor kappaB nuclear translocation as a crucial marker of brain response to interleukin-1. A study in rat and interleukin-1 type I deficient mouse.  J Neurochem. 2003;  87(4) 1024-1036
  • 52 Singh K, Balligand J L, Fischer T A, Smith T W, Kelly R A. Regulation of cytokine-inducible nitric oxide synthase in cardiac myocytes and microvascular endothelial cells. Role of extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2) and STAT1 alpha.  J Biol Chem. 1996;  271(2) 1111-1117
  • 53 Apostolakis S, Vogiatzi K, Krambovitis E, Spandidos D A. IL-1 cytokines in cardiovascular disease: diagnostic, prognostic and therapeutic implications.  Cardiovasc Hematol Agents Med Chem. 2008;  6(2) 150-158
  • 54 Wadgaonkar R, Pierce J W, Somnay K et al.. Regulation of c-Jun N-terminal kinase and p38 kinase pathways in endothelial cells.  Am J Respir Cell Mol Biol. 2004;  31(4) 423-431
  • 55 Williams M R, Kataoka N, Sakurai Y, Powers C M, Eskin S G, McIntire L V. Gene expression of endothelial cells due to interleukin-1 beta stimulation and neutrophil transmigration.  Endothelium. 2008;  15(1) 73-165
  • 56 Zhao B, Stavchansky S A, Bowden R A, Bowman P D. Effect of interleukin-1beta and tumor necrosis factor-alpha on gene expression in human endothelial cells.  Am J Physiol Cell Physiol. 2003;  284(6) C1577-C1583
  • 57 Gille J, Swerlick R A, Lawley T J, Caughman S W. Differential regulation of vascular cell adhesion molecule-1 gene transcription by tumor necrosis factor alpha and interleukin-1 alpha in dermal microvascular endothelial cells.  Blood. 1996;  87(1) 211-217
  • 58 Rogers R J, Monnier J M, Nick H S. Tumor necrosis factor-alpha selectively induces MnSOD expression via mitochondria-to-nucleus signaling, whereas interleukin-1beta utilizes an alternative pathway.  J Biol Chem. 2001;  276(23) 20419-20427
  • 59 Kuldo J M, Westra J, Asgeirsdóttir S A et al.. Differential effects of NF-kappaB and p38 MAPK inhibitors and combinations thereof on TNF-alpha- and IL-1beta-induced proinflammatory status of endothelial cells in vitro.  Am J Physiol Cell Physiol. 2005;  289(5) C1229-C1239
  • 60 Said F A, Werts C, Elalamy I, Couetil J P, Jacquemin C, Hatmi M. TNF-alpha, inefficient by itself, potentiates IL-1beta-induced PGHS-2 expression in human pulmonary microvascular endothelial cells: requirement of NF-kappaB and p38 MAPK pathways.  Br J Pharmacol. 2002;  136(7) 1005-1014
  • 61 Dauphinee S M, Karsan A. Lipopolysaccharide signaling in endothelial cells.  Lab Invest. 2006;  86(1) 9-22
  • 62 Hull C, McLean G, Wong F, Duriez P J, Karsan A. Lipopolysaccharide signals an endothelial apoptosis pathway through TNF receptor-associated factor 6-mediated activation of c-Jun NH2-terminal kinase.  J Immunol. 2002;  169(5) 2611-2618
  • 63 Li X, Tupper J C, Bannerman D D, Winn R K, Rhodes C J, Harlan J M. Phosphoinositide 3 kinase mediates Toll-like receptor 4-induced activation of NF-kappa B in endothelial cells.  Infect Immun. 2003;  71(8) 4414-4420
  • 64 Chen J X, Berry L C, Christman B W, Meyrick B. Glutathione mediates LPS-stimulated COX-2 expression via early transient p42/44 MAPK activation.  J Cell Physiol. 2003;  197(1) 86-93
  • 65 Kaur J, Kubes P. Endothelium—a critical detector of lipopolysaccharide. In: Aird WC Endothelial Biomedicine. Cambridge, United Kingdom; Cambridge University Press 2007: 410-418
  • 66 Hu X, Yee E, Harlan J M, Wong F, Karsan A. Lipopolysaccharide induces the antiapoptotic molecules, A1 and A20, in microvascular endothelial cells.  Blood. 1998;  92(8) 2759-2765
  • 67 Bannerman D D, Eiting K T, Winn R K, Harlan J M. FLICE-like inhibitory protein (FLIP) protects against apoptosis and suppresses NF-kappaB activation induced by bacterial lipopolysaccharide.  Am J Pathol. 2004;  165(4) 1423-1431
  • 68 Pollet I, Opina C J, Zimmerman C, Leong K G, Wong F, Karsan A. Bacterial lipopolysaccharide directly induces angiogenesis through TRAF6-mediated activation of NF-kappaB and c-Jun N-terminal kinase.  Blood. 2003;  102(5) 1740-1742
  • 69 Tseng H W, Juan H F, Huang H C et al.. Lipopolysaccharide-stimulated responses in rat aortic endothelial cells by a systems biology approach.  Proteomics. 2006;  6(22) 5915-5928
  • 70 Schlegel N, Baumer Y, Drenckhahn D, Waschke J. Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro.  Crit Care Med. 2009;  37(5) 1735-1743
  • 71 Montesano R, Pepper M S, Möhle-Steinlein U, Risau W, Wagner E F, Orci L. Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene.  Cell. 1990;  62(3) 435-445
  • 72 Garlanda C, Parravicini C, Sironi M et al.. Progressive growth in immunodeficient mice and host cell recruitment by mouse endothelial cells transformed by polyoma middle-sized T antigen: implications for the pathogenesis of opportunistic vascular tumors.  Proc Natl Acad Sci U S A. 1994;  91(15) 7291-7295
  • 73 van Leeuwen E BM, Wisman G BA, Tervaert J W et al.. An SV40 large T-antigen immortalized human umbilical vein endothelial cell line for anti-endothelial cell antibody detection.  Clin Exp Rheumatol. 2001;  19(3) 283-290
  • 74 Edgell C J, McDonald C C, Graham J B. Permanent cell line expressing human factor VIII-related antigen established by hybridization.  Proc Natl Acad Sci U S A. 1983;  80(12) 3734-3737
  • 75 Ades E W, Candal F J, Swerlick R A et al.. HMEC-1: establishment of an immortalized human microvascular endothelial cell line.  J Invest Dermatol. 1992;  99(6) 683-690
  • 76 Yang J, Chang E, Cherry A M et al.. Human endothelial cell life extension by telomerase expression.  J Biol Chem. 1999;  274(37) 26141-26148
  • 77 Viemann D, Goebeler M, Schmid S et al.. TNF induces distinct gene expression programs in microvascular and macrovascular human endothelial cells.  J Leukoc Biol. 2006;  80(1) 174-185
  • 78 Chi J T, Chang H Y, Haraldsen G et al.. Endothelial cell diversity revealed by global expression profiling.  Proc Natl Acad Sci U S A. 2003;  100(19) 10623-10628
  • 79 Kalogeris T J, Kevil C G, Laroux F S, Coe L L, Phifer T J, Alexander J S. Differential monocyte adhesion and adhesion molecule expression in venous and arterial endothelial cells.  Am J Physiol. 1999;  276(1 Pt 1) L9-L19
  • 80 Murakami S, Morioka T, Nakagawa Y, Suzuki Y, Arakawa M, Oite T. Expression of adhesion molecules by cultured human glomerular endothelial cells in response to cytokines: comparison to human umbilical vein and dermal microvascular endothelial cells.  Microvasc Res. 2001;  62(3) 383-391
  • 81 Wang Q, Pfeiffer II G R, Stevens T, Doerschuk C M. Lung microvascular and arterial endothelial cells differ in their responses to intercellular adhesion molecule-1 ligation.  Am J Respir Crit Care Med. 2002;  166(6) 872-877
  • 82 Deng D X, Tsalenko A, Vailaya A et al.. Differences in vascular bed disease susceptibility reflect differences in gene expression response to atherogenic stimuli.  Circ Res. 2006;  98(2) 200-208
  • 83 Invernici G, Ponti D, Corsini E et al.. Human microvascular endothelial cells from different fetal organs demonstrate organ-specific CAM expression.  Exp Cell Res. 2005;  308(2) 273-282
  • 84 Methe H, Balcells M, Alegret MdelC et al.. Vascular bed origin dictates flow pattern regulation of endothelial adhesion molecule expression.  Am J Physiol Heart Circ Physiol. 2007;  292(5) H2167-H2175
  • 85 Mason J C, Yarwood H, Sugars K, Haskard D O. Human umbilical vein and dermal microvascular endothelial cells show heterogeneity in response to PKC activation.  Am J Physiol. 1997;  273(4 Pt 1) C1233-C1240
  • 86 Sanabria P, Ross E, Ramirez E et al.. P2Y2 receptor desensitization on single endothelial cells.  Endothelium. 2008;  15(1) 43-51
  • 87 Nguyen V P, Chen S H, Trinh J, Kim H, Coomber B L, Dumont D J. Differential response of lymphatic, venous and arterial endothelial cells to angiopoietin-1 and angiopoietin-2.  BMC Cell Biol. 2007;  8 10
  • 88 Eppihimer M J, Wolitzky B, Anderson D C, Labow M A, Granger D N. Heterogeneity of expression of E- and P-selectins in vivo.  Circ Res. 1996;  79(3) 560-569
  • 89 Tamaru M, Tomura K, Sakamoto S, Tezuka K, Tamatani T, Narumi S. Interleukin-1beta induces tissue- and cell type-specific expression of adhesion molecules in vivo.  Arterioscler Thromb Vasc Biol. 1998;  18(8) 1292-1303
  • 90 Yao L, Setiadi H, Xia L, Laszik Z, Taylor F B, McEver R P. Divergent inducible expression of P-selectin and E-selectin in mice and primates.  Blood. 1999;  94(11) 3820-3828
  • 91 van Meurs M, Wulfert F M, Knol A J et al.. Early organ-specific endothelial activation during hemorrhagic shock and resuscitation.  Shock. 2008;  29(2) 291-299
  • 92 Yano K, Okada Y, Beldi G et al.. Elevated levels of placental growth factor represent an adaptive host response in sepsis.  J Exp Med. 2008;  205(11) 2623-2631
  • 93 Shapiro N I, Yano K, Sorasaki M, Fischer C, Shih S C, Aird W C. Skin biopsies demonstrate site-specific endothelial activation in mouse models of sepsis.  J Vasc Res. 2009;  46(5) 495-502
  • 94 Patel K N, Soubra S H, Bellera R V et al.. Differential role of von Willebrand factor and P-selectin on microvascular thrombosis in endotoxemia.  Arterioscler Thromb Vasc Biol. 2008;  28(12) 2225-2230
  • 95 Minami T, Donovan D J, Tsai J C, Rosenberg R D, Aird W C. Differential regulation of the von Willebrand factor and Flt-1 promoters in the endothelium of hypoxanthine phosphoribosyltransferase-targeted mice.  Blood. 2002;  100(12) 4019-4025
  • 96 Carrithers M, Tandon S, Canosa S, Michaud M, Graesser D, Madri J A. Enhanced susceptibility to endotoxic shock and impaired STAT3 signaling in CD31-deficient mice.  Am J Pathol. 2005;  166(1) 185-196
  • 97 Wang X H, Chen S F, Jin H M, Hu R M. Differential analyses of angiogenesis and expression of growth factors in micro- and macrovascular endothelial cells of type 2 diabetic rats.  Life Sci. 2009;  84(7–8) 240-249
  • 98 Al-Lamki R S, Wang J, Vandenabeele P et al.. TNFR1- and TNFR2-mediated signaling pathways in human kidney are cell type-specific and differentially contribute to renal injury.  FASEB J. 2005;  19(12) 1637-1645
  • 99 Moldobaeva A, Baek A, Wagner E M. MIP-2 causes differential activation of RhoA in mouse aortic versus pulmonary artery endothelial cells.  Microvasc Res. 2008;  75(1) 53-58
  • 100 Minami T, Aird W C. Endothelial cell gene regulation.  Trends Cardiovasc Med. 2005;  15(5) 174-184
  • 101 Fish J E, Marsden P A. Endothelial nitric oxide synthase: insight into cell-specific gene regulation in the vascular endothelium.  Cell Mol Life Sci. 2006;  63(2) 144-162
  • 102 Matouk C C, Marsden P A. Epigenetic regulation of vascular endothelial gene expression.  Circ Res. 2008;  102(8) 873-887
  • 103 Fish J E, Yan M S, Matouk C C et al.. Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones.  J Biol Chem. 2010;  285(2) 810-826
  • 104 Fish J E, Santoro M M, Morton S U et al.. miR-126 regulates angiogenic signaling and vascular integrity.  Dev Cell. 2008;  15(2) 272-284
  • 105 Harris T A, Yamakuchi M, Ferlito M, Mendell J T, Lowenstein C J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1.  Proc Natl Acad Sci U S A. 2008;  105(5) 1516-1521
  • 106 van Solingen C, Seghers L, Bijkerk R et al.. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis.  J Cell Mol Med. 2009;  13(8A) 1577-1585
  • 107 Würdinger T, Tannous B A, Saydam O et al.. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells.  Cancer Cell. 2008;  14(5) 382-393
  • 108 Suárez Y, Wang C, Manes T D, Pober J S. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation.  J Immunol. 2010;  184(1) 21-25
  • 109 Guttman M, Amit I, Garber M et al.. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals.  Nature. 2009;  458(7235) 223-227
  • 110 Mercer T R, Dinger M E, Mattick J S. Long non-coding RNAs: insights into functions.  Nat Rev Genet. 2009;  10(3) 155-159
  • 111 Khalil A M, Guttman M, Huarte M et al.. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression.  Proc Natl Acad Sci U S A. 2009;  106(28) 11667-11672
  • 112 Gorska M M, Liang Q, Stafford S J et al.. MK2 controls the level of negative feedback in the NF-kappaB pathway and is essential for vascular permeability and airway inflammation.  J Exp Med. 2007;  204(7) 1637-1652
  • 113 Weis S, Shintani S, Weber A et al.. Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction.  J Clin Invest. 2004;  113(6) 885-894
  • 114 Clauss M, Sunderkötter C, Sveinbjörnsson B et al.. A permissive role for tumor necrosis factor in vascular endothelial growth factor-induced vascular permeability.  Blood. 2001;  97(5) 1321-1329
  • 115 Ouchi N, Kihara S, Arita Y et al.. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway.  Circulation. 2000;  102(11) 1296-1301
  • 116 Nakao S, Kuwano T, Ishibashi T, Kuwano M, Ono M. Synergistic effect of TNF-alpha in soluble VCAM-1-induced angiogenesis through alpha 4 integrins.  J Immunol. 2003;  170(11) 5704-5711
  • 117 Tonks N K. Protein tyrosine phosphatases: from genes, to function, to disease.  Nat Rev Mol Cell Biol. 2006;  7(11) 833-846
  • 118 Nakamura Y, Patrushev N, Inomata H et al.. Role of protein tyrosine phosphatase 1B in vascular endothelial growth factor signaling and cell-cell adhesions in endothelial cells.  Circ Res. 2008;  102(10) 1182-1191
  • 119 Enesa K, Zakkar M, Chaudhury H et al.. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling.  J Biol Chem. 2008;  283(11) 7036-7045
  • 120 Beck G C, Rafat N, Brinkkoetter P et al.. Heterogeneity in lipopolysaccharide responsiveness of endothelial cells identified by gene expression profiling: role of transcription factors.  Clin Exp Immunol. 2006;  143(3) 523-533
  • 121 Kułdo J M, Ogawara K I, Werner N et al.. Molecular pathways of endothelial cell activation for (targeted) pharmacological intervention of chronic inflammatory diseases.  Curr Vasc Pharmacol. 2005;  3(1) 11-39
  • 122 Gilmore T D, Herscovitch M. Inhibitors of NF-kappaB signaling: 785 and counting.  Oncogene. 2006;  25(51) 6887-6899
  • 123 Keri G, Orfi L, Eros D et al.. Signal transduction therapy with rationally designed kinase inhibitors.  Curr Signal Transduct Ther. 2006;  1 67-95
  • 124 Fabian M A, Biggs III W H, Treiber D K et al.. A small molecule-kinase interaction map for clinical kinase inhibitors.  Nat Biotechnol. 2005;  23(3) 329-336
  • 125 Fedorov O, Marsden B, Pogacic V et al.. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases.  Proc Natl Acad Sci U S A. 2007;  104(51) 20523-20528
  • 126 Everts M, Kok R J, Asgeirsdóttir S A et al.. Selective intracellular delivery of dexamethasone into activated endothelial cells using an E-selectin-directed immunoconjugate.  J Immunol. 2002;  168(2) 883-889
  • 127 Koning G A, Schiffelers R M, Wauben M HM et al.. Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis.  Arthritis Rheum. 2006;  54(4) 1198-1208
  • 128 Schraa A J, Kok R J, Berendsen A D et al.. Endothelial cells internalize and degrade RGD-modified proteins developed for tumor vasculature targeting.  J Control Release. 2002;  83 241-251
  • 129 Schraa A J, Kok R J, Moorlag H E et al.. Targeting of RGD-modified proteins to tumor vasculature: a pharmacokinetic and cellular distribution study.  Int J Cancer. 2002;  102(5) 469-475
  • 130 Janssen A P, Schiffelers R M, ten Hagen T L et al.. Peptide-targeted PEG-liposomes in anti-angiogenic therapy.  Int J Pharm. 2003;  254(1) 55-58
  • 131 Asgeirsdóttir S A, Kamps J AAM, Bakker H I et al.. Site-specific inhibition of glomerulonephritis progression by targeted delivery of dexamethasone to glomerular endothelium.  Mol Pharmacol. 2007;  72(1) 121-131
  • 132 Asgeirsdóttir S A, Zwiers P J, Morselt H W et al.. Inhibition of proinflammatory genes in anti-GBM glomerulonephritis by targeted dexamethasone-loaded AbEsel liposomes.  Am J Physiol Renal Physiol. 2008;  294(3) F554-F561
  • 133 Pusztaszeri M P, Seelentag W, Bosman F T. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues.  J Histochem Cytochem. 2006;  54(4) 385-395
  • 134 Satchell S C, Tasman C H, Singh A et al.. Conditionally immortalized human glomerular endothelial cells expressing fenestrations in response to VEGF.  Kidney Int. 2006;  69(9) 1633-1640
  • 135 Muczynski K A, Ekle D M, Coder D M, Anderson S K. Normal human kidney HLA-DR-expressing renal microvascular endothelial cells: characterization, isolation, and regulation of MHC class II expression.  J Am Soc Nephrol. 2003;  14(5) 1336-1348
  • 136 Maharaj A S, Saint-Geniez M, Maldonado A E, D'Amore P A. Vascular endothelial growth factor localization in the adult.  Am J Pathol. 2006;  168(2) 639-648
  • 137 Monvoisin A, Alva J A, Hofmann J J, Zovein A C, Lane T F, Iruela-Arispe M L. VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium.  Dev Dyn. 2006;  235(12) 3413-3422
  • 138 Gareus R, Kotsaki E, Xanthoulea S et al.. Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis.  Cell Metab. 2008;  8(5) 372-383
  • 139 Minami T, Yano K, Miura M et al.. The Down syndrome critical region gene 1 short variant promoters direct vascular bed-specific gene expression during inflammation in mice.  J Clin Invest. 2009;  119(8) 2257-2270
  • 140 Zhang L, Zhang Z G, Liu X S, Hozeska-Solgot A, Chopp M. The PI3K/Akt pathway mediates the neuroprotective effect of atorvastatin in extending thrombolytic therapy after embolic stroke in the rat.  Arterioscler Thromb Vasc Biol. 2007;  27(11) 2470-2475
  • 141 van Meurs M, Kurniati N F, Wulfert F M et al.. Shock-induced stress induces loss of microvascular endothelial Tie2 in the kidney which is not associated with reduced glomerular barrier function.  Am J Physiol Renal Physiol. 2009;  297(2) F272-F281
  • 142 Hellebrekers D MEI, Castermans K, Viré E et al.. Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications.  Cancer Res. 2006;  66(22) 10770-10777
  • 143 Asgeirsdottir S A, Talman E G, de Graaf I A et al.. Targeted transfection increases siRNA uptake and gene silencing in primary endothelial cells in vitro—a quantitative study.  J Control Release. 2010;  141(2) 241-251
  • 144 Pham N A, Schwock J, Iakovlev V, Pond G, Hedley D W, Tsao M S. Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis.  BMC Cancer. 2008;  8 43
  • 145 Stambe C, Nikolic-Paterson D J, Hill P A, Dowling J, Atkins R C. p38 Mitogen-activated protein kinase activation and cell localization in human glomerulonephritis: correlation with renal injury.  J Am Soc Nephrol. 2004;  15(2) 326-336
  • 146 Kuwai T, Nakamura T, Sasaki T et al.. Phosphorylated epidermal growth factor receptor on tumor-associated endothelial cells is a primary target for therapy with tyrosine kinase inhibitors.  Neoplasia. 2008;  10(5) 489-500

Grietje MolemaPh.D. 

University Medical Center Groningen, Department Pathology & Medical Biology

Medical Biology Section, IPC EA11, Hanzeplein 1, 9713 GZ Groningen, The Netherlands

Email: g.molema@med.umcg.nl