Subscribe to RSS
DOI: 10.1055/s-0030-1253452
New Developments in Lung Endothelial Heterogeneity: von Willebrand Factor, P-Selectin, and the Weibel-Palade Body
Publication History
Publication Date:
20 May 2010 (online)
ABSTRACT
Quiescent pulmonary endothelium establishes an antithrombotic, anti-inflammatory surface that promotes blood flow. However, the endothelium rapidly responds to injury and inflammation by promoting thrombosis and enabling the directed transmigration of inflammatory cells, such as neutrophils, into the alveolar airspace. Although the endothelial cell signals responsible for establishing a prothrombotic surface are distinct from those responsible for recognizing circulating neutrophils, these processes are highly interrelated. Von Willebrand factor (VWF)-stimulated secretion plays an important role in thrombus formation, and P-selectin surface expression plays a key role in neutrophil binding necessary for transmigration. Both VWF and P-selectin are located within Weibel-Palade bodies in pulmonary arteries and arterioles, yet Weibel-Palade bodies are absent in capillaries. Despite the absence of the Weibel-Palade bodies, pulmonary capillaries express both VWF and P-selectin. The physiological and pathophysiological significance of these observations is unclear. In this review, we address some anatomical and physiological features that distinguish pulmonary artery, capillary, and vein endothelium. In addition, we review our current understanding regarding the stimulated secretion of VWF and P-selectin in pulmonary artery and capillary endothelium. This information is considered in the context of vasculitis and pneumonia, two pathophysiological processes to which the stimulated secretion of VWF and P-selectin contribute.
KEYWORDS
Thrombin - permeability - coagulation - vasculitis - pneumonia - acute lung injury
REFERENCES
-
1 Stan R V.
Anatomy of the pulmonary endothelium . In: Voelkel NF, Rounds S The Pulmonary Endothelium. West Sussex, United Kingdom; Wiley-Blackwell 2009: 25 - 2 Chi J T, Chang H Y, Haraldsen G et al.. Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A. 2003; 100(19) 10623-10628
- 3 King J, Hamil T, Creighton J et al.. Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvasc Res. 2004; 67(2) 139-151
- 4 Stevens T, Fouty B, Hepler L et al.. Cytosolic Ca2 + and adenylyl cyclase responses in phenotypically distinct pulmonary endothelial cells. Am J Physiol. 1997; 272(1 Pt 1) L51-L59
- 5 Stevens T, Creighton J, Thompson W J. Control of cAMP in lung endothelial cell phenotypes. Implications for control of barrier function. Am J Physiol. 1999; 277(1 Pt 1) L119-L126
- 6 Cioffi D L, Wu S, Stevens T. On the endothelial cell I(SOC). Cell Calcium. 2003; 33(5-6) 323-336
- 7 Grishko V, Solomon M, Wilson G L, LeDoux S P, Gillespie M N. Oxygen radical-induced mitochondrial DNA damage and repair in pulmonary vascular endothelial cell phenotypes. Am J Physiol Lung Cell Mol Physiol. 2001; 280(6) L1300-L1308
- 8 Ofori-Acquah S F, King J, Voelkel N, Schaphorst K L, Stevens T. Heterogeneity of barrier function in the lung reflects diversity in endothelial cell junctions. Microvasc Res. 2008; 75(3) 391-402
- 9 Prasain N, Stevens T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res. 2009; 77(1) 53-63
- 10 Mehta D, Malik A B. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006; 86(1) 279-367
- 11 Parker J C, Stevens T, Randall J, Weber D S, King J A. Hydraulic conductance of pulmonary microvascular and macrovascular endothelial cell monolayers. Am J Physiol Lung Cell Mol Physiol. 2006; 291(1) L30-L37
- 12 Gebb S, Stevens T. On lung endothelial cell heterogeneity. Microvasc Res. 2004; 68(1) 1-12
- 13 Alvarez D F, Huang L, King J A, ElZarrad M K, Yoder M C, Stevens T. Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol. 2008; 294(3) L419-L430
- 14 Cioffi D L, Moore T M, Schaack J, Creighton J R, Cooper D M, Stevens T. Dominant regulation of interendothelial cell gap formation by calcium-inhibited type 6 adenylyl cyclase. J Cell Biol. 2002; 157(7) 1267-1278
- 15 Stevens T. Molecular and cellular determinants of lung endothelial cell heterogeneity. Chest. 2005; 128(6, suppl) 558S-564S
- 16 Clark J, Alvarez D F, Alexeyev M et al.. Regulatory role for nucleosome assembly protein-1 in the proliferative and vasculogenic phenotype of pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol. 2008; 294(3) L431-L439
-
17 Lowenstein C J, Morrell C N, Yamakuchi M.
Weibel-Palade bodies: vesicular trafficking on the vascular highways . In: Aird WC Endothelial Biomedicine. New York, NY; Cambridge University Press 2007: 657 - 18 Fuchs A, Weibel E R. Morphometric study of the distribution of a specific cytoplasmatic organoid in the rat's endothelial cells [in German]. Z Zellforsch Mikrosk Anat. 1966; 73(1) 1-9
- 19 Michaux G, Hewlett L J, Messenger S L et al.. Analysis of intracellular storage and regulated secretion of 3 von Willebrand disease-causing variants of von Willebrand factor. Blood. 2003; 102(7) 2452-2458
- 20 Haberichter S L, Jacobi P, Montgomery R R. Critical independent regions in the VWF propeptide and mature VWF that enable normal VWF storage. Blood. 2003; 101(4) 1384-1391
- 21 Voorberg J, Fontijn R, van Mourik J A, Pannekoek H. Domains involved in multimer assembly of von Willebrand factor (vWF): multimerization is independent of dimerization. EMBO J. 1990; 9(3) 797-803
- 22 Foster P A, Fulcher C A, Marti T, Titani K, Zimmerman T S. A major factor VIII binding domain resides within the amino-terminal 272 amino acid residues of von Willebrand factor. J Biol Chem. 1987; 262(18) 8443-8446
- 23 Michaux G, Pullen T J, Haberichter S L, Cutler D F. P-selectin binds to the D′-D3 domains of von Willebrand factor in Weibel-Palade bodies. Blood. 2006; 107(10) 3922-3924
- 24 Wagner D D, Saffaripour S, Bonfanti R et al.. Induction of specific storage organelles by von Willebrand factor propolypeptide. Cell. 1991; 64(2) 403-413
- 25 Michelakis E D, Weir E K, Wu X et al.. Potassium channels regulate tone in rat pulmonary veins. Am J Physiol Lung Cell Mol Physiol. 2001; 280(6) L1138-L1147
- 26 Trifiletti A, Scamardi R, Bagnato G F, Gaudio A. Hemostatic changes in vasculitides. Thromb Res. 2009; 124(3) 252-255
-
27 Travis W D.
Vasculitis . In: Dail DH, Tomashefski JF, Cagle PT, Farver CF, Fraire AE Dail and Hammar's Pulmonary Pathology. Vol I. Nonneoplastic Lung Disease. 3rd ed. New York, NY; Springer 2004: 1088 - 28 Moser K M, Fedullo P F, LitteJohn J K, Crawford R. Frequent asymptomatic pulmonary embolism in patients with deep venous thrombosis. JAMA. 1994; 271(3) 223-225
- 29 Schultz D J, Brasel K J, Washington L et al.. Incidence of asymptomatic pulmonary embolism in moderately to severely injured trauma patients. J Trauma. 2004; 56(4) 727-731 discussion 731-733
- 30 Velmahos G C, Spaniolas K, Tabbara M et al.. Pulmonary embolism and deep venous thrombosis in trauma: are they related?. Arch Surg. 2009; 144(10) 928-932
- 31 Zhou C, Liu B N, Sellak H, Shin H S, Wu S W. α1G T-type Ca2 + channel controls plasma membrane P-selectin expression in pulmonary microvascular endothelial cells. FASEB J. 2007; 21(6) A1433 , Abstract 977.17
- 32 Zhou C, Chen H, King J A et al.. A distinct subcellular pool and an α-1G T-type Ca2 + channel regulated surface expression of P-selectin in pulmonary capillary endothelium. FASEB J. 2009; 23 , 964.13 (Abst)
- 33 Gebb S A, Graham J A, Hanger C C et al.. Sites of leukocyte sequestration in the pulmonary microcirculation. J Appl Physiol. 1995; 79(2) 493-497
- 34 Forlow S B, Foley P L, Ley K. Severely reduced neutrophil adhesion and impaired host defense against fecal and commensal bacteria in CD18-/-P-selectin-/- double null mice. FASEB J. 2002; 16(12) 1488-1496
- 35 Wickel D J, Mercer-Jones M, Peyton J C, Shrotri M S, Cheadle W G. Neutrophil migration into the peritoneum is P-selectin dependent, but sequestration in lungs is selectin independent during peritonitis. Shock. 1998; 10(4) 265-269
- 36 Wu S, Jian M Y, Xu Y C et al.. Ca2 + entry via α1G and TRPV4 channels differentially regulates surface expression of P-selectin and barrier integrity in pulmonary capillary endothelium. Am J Physiol Lung Cell Mol Physiol. 2009; 297(4) L650-L657
- 37 Wu S, Haynes Jr J, Taylor J T et al.. Cav3.1 (alpha1G) T-type Ca2 + channels mediate vaso-occlusion of sickled erythrocytes in lung microcirculation. Circ Res. 2003; 93(4) 346-353
- 38 Garcia J G, Siflinger-Birnboim A, Bizios R, Del Vecchio P J, Fenton II J W, Malik A B. Thrombin-induced increase in albumin permeability across the endothelium. J Cell Physiol. 1986; 128(1) 96-104
- 39 Troyanovsky B, Alvarez D F, King J A, Schaphorst K L. Thrombin enhances the barrier function of rat microvascular endothelium in a PAR-1-dependent manner. Am J Physiol Lung Cell Mol Physiol. 2008; 294(2) L266-L275
- 40 Zhou C, Chen H, Lu F et al.. Cav3.1 (alpha1G) controls von Willebrand factor secretion in rat pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2007; 292(4) L833-L844
- 41 Alvarez D F, King J A, Weber D, Addison E, Liedtke W, Townsley M I. Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res. 2006; 99(9) 988-995
- 42 Lowe K, Alvarez D, King J, Stevens T. Phenotypic heterogeneity in lung capillary and extra-alveolar endothelial cells. Increased extra-alveolar endothelial permeability is sufficient to decrease compliance. J Surg Res. 2007; 143(1) 70-77
- 43 Cioffi D L, Lowe K, Alvarez D F, Barry C, Stevens T. TRPing on the lung endothelium. calcium channels that regulate barrier function. Antioxid Redox Signal. 2009; 11(4) 765-776
Troy StevensPh.D.
Departments of Pharmacology and Medicine, Director, Center for Lung Biology
College of Medicine, University of South Alabama, 307 N. University Blvd., Mobile, AL 36688
Email: tstevens@jaguar1.usouthal.edu