Semin Thromb Hemost 2010; 36(3): 332-342
DOI: 10.1055/s-0030-1253455
© Thieme Medical Publishers

Targeting Antioxidant and Antithrombotic Biotherapeutics to Endothelium

Ronald Carnemolla1 , Vladimir V. Shuvaev1 , Vladimir R. Muzykantov1
  • 1Department of Pharmacology and Program in Targeted Therapeutics of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
Further Information

Publication History

Publication Date:
20 May 2010 (online)

ABSTRACT

The endothelium is one of the key targets for pharmacological interventions in oxidative stress and thrombosis, two conditions that are notoriously difficult to treat due to limited efficacy and precision of action of current drugs. Design of molecular and nano-devices that deliver potent antioxidant and antithrombotic therapeutic enzymes to the endothelium holds promise to improve the potency, localization, timing, specificity, safety, and mechanistic precision of these interventions. In particular, cell adhesion molecules expressed on the surface of resting and pathologically altered endothelial cells can be used for drug delivery to the endothelial surface (preferable for thrombolytics) and into intracellular compartments (preferable for antioxidants). Drug delivery platforms including protein conjugates, recombinant fusion constructs, and stealth polymer carriers designed to target these drugs to endothelium are reviewed in this article.

REFERENCES

  • 1 Muzykantov V R. Biomedical aspects of targeted delivery of drugs to pulmonary endothelium.  Expert Opin Drug Deliv. 2005;  2(5) 909-926
  • 2 Hajitou A, Trepel M, Lilley C E et al.. A hybrid vector for ligand-directed tumor targeting and molecular imaging.  Cell. 2006;  125(2) 385-398
  • 3 Durr E, Yu J, Krasinska K M et al.. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture.  Nat Biotechnol. 2004;  22(8) 985-992
  • 4 Oh P, Li Y, Yu J et al.. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy.  Nature. 2004;  429(6992) 629-635
  • 5 Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display.  J Clin Invest. 1998;  102(2) 430-437
  • 6 Ghitescu L, Jacobson B S, Crine P. A novel, 85 kDa endothelial antigen differentiates plasma membrane macrodomains in lung alveolar capillaries.  Endothelium. 1999;  6(3) 241-250
  • 7 Murciano J C, Harshaw D W, Ghitescu L, Danilov S M, Muzykantov V R. Vascular immunotargeting to endothelial surface in a specific macrodomain in alveolar capillaries.  Am J Respir Crit Care Med. 2001;  164(7) 1295-1302
  • 8 Oh P, Borgström P, Witkiewicz H et al.. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung.  Nat Biotechnol. 2007;  25(3) 327-337
  • 9 Muzykantov V R, Puchnina E A, Atochina E N et al.. Endotoxin reduces specific pulmonary uptake of radiolabeled monoclonal antibody to angiotensin-converting enzyme.  J Nucl Med. 1991;  32(3) 453-460
  • 10 Danilov S, Atochina E, Hiemisch H et al.. Interaction of mAb to angiotensin-converting enzyme (ACE) with antigen in vitro and in vivo: antibody targeting to the lung induces ACE antigenic modulation.  Int Immunol. 1994;  6(8) 1153-1160
  • 11 Danilov S M, Gavrilyuk V D, Franke F E et al.. Lung uptake of antibodies to endothelial antigens: key determinants of vascular immunotargeting.  Am J Physiol Lung Cell Mol Physiol. 2001;  280(6) L1335-L1347
  • 12 Heitsch H, Brovkovych S, Malinski T, Wiemer G. Angiotensin-(1-7)-stimulated nitric oxide and superoxide release from endothelial cells.  Hypertension. 2001;  37(1) 72-76
  • 13 Muzykantov V R, Atochina E N, Kuo A et al.. Endothelial cells internalize monoclonal antibody to angiotensin-converting enzyme.  Am J Physiol. 1996;  270(5 Pt 1) L704-L713
  • 14 Danilov S M, Martynov A V, Klibanov A L et al.. Radioimmunoimaging of lung vessels: an approach using indium-111-labeled monoclonal antibody to angiotensin-converting enzyme.  J Nucl Med. 1989;  30(10) 1686-1692
  • 15 Balyasnikova I V, Metzger R, Visintine D J et al.. Selective rat lung endothelial targeting with a new set of monoclonal antibodies to angiotensin I-converting enzyme.  Pulm Pharmacol Ther. 2005;  18(4) 251-267
  • 16 Balyasnikova I V, Sun Z L, Metzger R et al.. Monoclonal antibodies to native mouse angiotensin-converting enzyme (CD143): ACE expression quantification, lung endothelial cell targeting and gene delivery.  Tissue Antigens. 2006;  67(1) 10-29
  • 17 Muzykantov V R, Danilov S M. Targeting of radiolabeled monoclonal antibody against ACE to the pulmonary endothelium. In: Torchilin V Targeted Delivery of Imaging Agents. Roca Baton, FL; CRC Press 1995: 465-485
  • 18 Muzykantov V R, Atochina E N, Ischiropoulos H, Danilov S M, Fisher A B. Immunotargeting of antioxidant enzyme to the pulmonary endothelium.  Proc Natl Acad Sci U S A. 1996;  93(11) 5213-5218
  • 19 Atochina E N, Balyasnikova I V, Danilov S M, Granger D N, Fisher A B, Muzykantov V R. Immunotargeting of catalase to ACE or ICAM-1 protects perfused rat lungs against oxidative stress.  Am J Physiol. 1998;  275(4 Pt 1) L806-L817
  • 20 Nowak K, Weih S, Metzger R et al.. Immunotargeting of catalase to lung endothelium via anti-angiotensin-converting enzyme antibodies attenuates ischemia-reperfusion injury of the lung in vivo.  Am J Physiol Lung Cell Mol Physiol. 2007;  293(1) L162-L169
  • 21 Watanabe K, Lam G, Keresztes R S, Jaffe E A. Lipopolysaccharides decrease angiotensin converting enzyme activity expressed by cultured human endothelial cells.  J Cell Physiol. 1992;  150(2) 433-439
  • 22 Atochina E N, Hiemisch H H, Muzykantov V R, Danilov S M. Systemic administration of platelet-activating factor in rat reduces specific pulmonary uptake of circulating monoclonal antibody to angiotensin-converting enzyme.  Lung. 1992;  170(6) 349-358
  • 23 Scherpereel A, Wiewrodt R, Christofidou-Solomidou M et al.. Cell-selective intracellular delivery of a foreign enzyme to endothelium in vivo using vascular immunotargeting.  FASEB J. 2001;  15(2) 416-426
  • 24 Danielyan K, Ding B S, Gottstein C, Cines D B, Muzykantov V R. Delivery of anti-platelet-endothelial cell adhesion molecule single-chain variable fragment-urokinase fusion protein to the cerebral vasculature lyses arterial clots and attenuates postischemic brain edema.  J Pharmacol Exp Ther. 2007;  321(3) 947-952
  • 25 Garnacho C, Dhami R, Simone E et al.. Delivery of acid sphingomyelinase in normal and Niemann-Pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers.  J Pharmacol Exp Ther. 2008;  325(2) 400-408
  • 26 Muro S, Dziubla T, Qiu W et al.. Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1.  J Pharmacol Exp Ther. 2006;  317(3) 1161-1169
  • 27 Muro S, Muzykantov V R. Targeting of antioxidant and anti-thrombotic drugs to endothelial cell adhesion molecules.  Curr Pharm Des. 2005;  11(18) 2383-2401
  • 28 Nakada M T, Amin K, Christofidou-Solomidou M et al.. Antibodies against the first Ig-like domain of human platelet endothelial cell adhesion molecule-1 (PECAM-1) that inhibit PECAM-1-dependent homophilic adhesion block in vivo neutrophil recruitment.  J Immunol. 2000;  164(1) 452-462
  • 29 Murohara T, Delyani J A, Albelda S M, Lefer A M. Blockade of platelet endothelial cell adhesion molecule-1 protects against myocardial ischemia and reperfusion injury in cats.  J Immunol. 1996;  156(9) 3550-3557
  • 30 Kumasaka T, Quinlan W M, Doyle N A et al.. Role of the intercellular adhesion molecule-1(ICAM-1) in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, anti-ICAM-1 monoclonal antibodies, and ICAM-1 mutant mice.  J Clin Invest. 1996;  97(10) 2362-2369
  • 31 Muro S, Wiewrodt R, Thomas A et al.. A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1.  J Cell Sci. 2003;  116(Pt 8) 1599-1609
  • 32 Muzykantov V R, Christofidou-Solomidou M, Balyasnikova I et al.. Streptavidin facilitates internalization and pulmonary targeting of an anti-endothelial cell antibody (platelet-endothelial cell adhesion molecule 1): a strategy for vascular immunotargeting of drugs.  Proc Natl Acad Sci U S A. 1999;  96(5) 2379-2384
  • 33 Albelda S M. Endothelial and epithelial cell adhesion molecules.  Am J Respir Cell Mol Biol. 1991;  4(3) 195-203
  • 34 Wiewrodt R, Thomas A P, Cipelletti L et al.. Size-dependent intracellular immunotargeting of therapeutic cargoes into endothelial cells.  Blood. 2002;  99(3) 912-922
  • 35 Christofidou-Solomidou M, Pietra G G, Solomides C C et al.. Immunotargeting of glucose oxidase to endothelium in vivo causes oxidative vascular injury in the lungs.  Am J Physiol Lung Cell Mol Physiol. 2000;  278(4) L794-L805
  • 36 Scherpereel A, Rome J J, Wiewrodt R et al.. Platelet-endothelial cell adhesion molecule-1-directed immunotargeting to cardiopulmonary vasculature.  J Pharmacol Exp Ther. 2002;  300(3) 777-786
  • 37 Li S, Tan Y, Viroonchatapan E, Pitt B R, Huang L. Targeted gene delivery to pulmonary endothelium by anti-PECAM antibody.  Am J Physiol Lung Cell Mol Physiol. 2000;  278(3) L504-L511
  • 38 Muro S, Cui X, Gajewski C, Murciano J C, Muzykantov V R, Koval M. Slow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress.  Am J Physiol Cell Physiol. 2003;  285(5) C1339-C1347
  • 39 Almenar-Queralt A, Duperray A, Miles L A, Felez J, Altieri D C. Apical topography and modulation of ICAM-1 expression on activated endothelium.  Am J Pathol. 1995;  147(5) 1278-1288
  • 40 Panés J, Perry M A, Anderson D C et al.. Regional differences in constitutive and induced ICAM-1 expression in vivo.  Am J Physiol. 1995;  269(6 Pt 2) H1955-H1964
  • 41 Murciano J C, Muro S, Koniaris L et al.. ICAM-directed vascular immunotargeting of antithrombotic agents to the endothelial luminal surface.  Blood. 2003;  101(10) 3977-3984
  • 42 Beck-Schimmer B, Schimmer R C, Warner R L et al.. Expression of lung vascular and airway ICAM-1 after exposure to bacterial lipopolysaccharide.  Am J Respir Cell Mol Biol. 1997;  17(3) 344-352
  • 43 Vaporciyan A A, Mulligan M S, Warren J S, Barton P A, Miyasaka M, Ward P A. Up-regulation of lung vascular ICAM-1 in rats is complement dependent.  J Immunol. 1995;  155(3) 1442-1449
  • 44 Sasso D E, Gionfriddo M A, Thrall R S, Syrbu S I, Smilowitz H M, Weiner R E. Biodistribution of indium-111-labeled antibody directed against intercellular adhesion molecule-1.  J Nucl Med. 1996;  37(4) 656-661
  • 45 Villanueva F S, Jankowski R J, Klibanov S et al.. Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells.  Circulation. 1998;  98(1) 1-5
  • 46 Bloemen P G, Henricks P A, van Bloois L et al.. Adhesion molecules: a new target for immunoliposome-mediated drug delivery.  FEBS Lett. 1995;  357(2) 140-144
  • 47 Kishimoto T K, Rothlein R. Integrins, ICAMs, and selectins: role and regulation of adhesion molecules in neutrophil recruitment to inflammatory sites.  Adv Pharmacol. 1994;  25 117-169
  • 48 Springer T A. Adhesion receptors of the immune system.  Nature. 1990;  346(6283) 425-434
  • 49 Spragg D D, Alford D R, Greferath R et al.. Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system.  Proc Natl Acad Sci U S A. 1997;  94(16) 8795-8800
  • 50 Kiely J M, Cybulsky M I, Luscinskas F W, Gimbrone Jr M A. Immunoselective targeting of an anti-thrombin agent to the surface of cytokine-activated vascular endothelial cells.  Arterioscler Thromb Vasc Biol. 1995;  15(8) 1211-1218
  • 51 Kuijpers T W, Raleigh M, Kavanagh T et al.. Cytokine-activated endothelial cells internalize E-selectin into a lysosomal compartment of vesiculotubular shape. A tubulin-driven process.  J Immunol. 1994;  152(10) 5060-5069
  • 52 Straley K S, Green S A. Rapid transport of internalized P-selectin to late endosomes and the TGN: roles in regulating cell surface expression and recycling to secretory granules.  J Cell Biol. 2000;  151(1) 107-116
  • 53 von Asmuth E J, Smeets E F, Ginsel L A, Onderwater J J, Leeuwenberg J F, Buurman W A. Evidence for endocytosis of E-selectin in human endothelial cells.  Eur J Immunol. 1992;  22(10) 2519-2526
  • 54 Kessner S, Krause A, Rothe U, Bendas G. Investigation of the cellular uptake of E-Selectin-targeted immunoliposomes by activated human endothelial cells.  Biochim Biophys Acta. 2001;  1514(2) 177-190
  • 55 Kok R J, Everts M, Asgeirsdóttir S A, Meijer D K, Molema G. Cellular handling of a dexamethasone-anti-E-selectin immunoconjugate by activated endothelial cells: comparison with free dexamethasone.  Pharm Res. 2002;  19(11) 1730-1735
  • 56 Harari O A, Wickham T J, Stocker C J et al.. Targeting an adenoviral gene vector to cytokine-activated vascular endothelium via E-selectin.  Gene Ther. 1999;  6(5) 801-807
  • 57 Lindner J R, Song J, Christiansen J, Klibanov A L, Xu F, Ley K. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin.  Circulation. 2001;  104(17) 2107-2112
  • 58 Kelly K A, Allport J R, Tsourkas A, Shinde-Patil V R, Josephson L, Weissleder R. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle.  Circ Res. 2005;  96(3) 327-336
  • 59 Keelan E T, Harrison A A, Chapman P T, Binns R M, Peters A M, Haskard D O. Imaging vascular endothelial activation: an approach using radiolabeled monoclonal antibodies against the endothelial cell adhesion molecule E-selectin.  J Nucl Med. 1994;  35(2) 276-281
  • 60 Lindner J R, Klibanov A L, Ley K. Targeting inflammation. In: Muzykantov VR, Torchilin VP Biomedical Aspects of Drug Targeting. Boston, MA; Kluwer Academic Publications 2003: 149-172
  • 61 Bonaventura J, Gow A. NO and superoxide: opposite ends of the seesaw in cardiac contractility.  Proc Natl Acad Sci U S A. 2004;  101(47) 16403-16404
  • 62 Christofidou-Solomidou M, Muzykantov V R. Antioxidant strategies in respiratory medicine.  Treat Respir Med. 2006;  5(1) 47-78
  • 63 Cai H, Griendling K K, Harrison D G. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases.  Trends Pharmacol Sci. 2003;  24(9) 471-478
  • 64 McCord J M. Superoxide dismutase in aging and disease: an overview.  Methods Enzymol. 2002;  349 331-341
  • 65 Kinnula V L, Crapo J D. Superoxide dismutases in the lung and human lung diseases.  Am J Respir Crit Care Med. 2003;  167(12) 1600-1619
  • 66 Beckman J S, Minor Jr R L, White C W, Repine J E, Rosen G M, Freeman B A. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance.  J Biol Chem. 1988;  263(14) 6884-6892
  • 67 Giri S N, Misra H P. Fate of superoxide dismutase in mice following oral route of administration.  Med Biol. 1984;  62(5) 285-289
  • 68 Corvo M L, Boerman O C, Oyen W J et al.. Intravenous administration of superoxide dismutase entrapped in long circulating liposomes. II. In vivo fate in a rat model of adjuvant arthritis.  Biochim Biophys Acta. 1999;  1419(2) 325-334
  • 69 Fujita T, Nishikawa M, Tamaki C, Takakura Y, Hashida M, Sezaki H. Targeted delivery of human recombinant superoxide dismutase by chemical modification with mono- and polysaccharide derivatives.  J Pharmacol Exp Ther. 1992;  263(3) 971-978
  • 70 Freeman B A, Young S L, Crapo J D. Liposome-mediated augmentation of superoxide dismutase in endothelial cells prevents oxygen injury.  J Biol Chem. 1983;  258(20) 12534-12542
  • 71 Day B J, Shawen S, Liochev S I, Crapo J D. A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced endothelial cell injury, in vitro.  J Pharmacol Exp Ther. 1995;  275(3) 1227-1232
  • 72 Duann P, Datta P K, Pan C, Blumberg J B, Sharma M, Lianos E A. Superoxide dismutase mimetic preserves the glomerular capillary permeability barrier to protein.  J Pharmacol Exp Ther. 2006;  316(3) 1249-1254
  • 73 Tamura Y, Chi L G, Driscoll Jr E M et al.. Superoxide dismutase conjugated to polyethylene glycol provides sustained protection against myocardial ischemia/reperfusion injury in canine heart.  Circ Res. 1988;  63(5) 944-959
  • 74 Igarashi R, Hoshino J, Ochiai A, Morizawa Y, Mizushima Y. Lecithinized superoxide dismutase enhances its pharmacologic potency by increasing its cell membrane affinity.  J Pharmacol Exp Ther. 1994;  271(3) 1672-1677
  • 75 Koo D D, Welsh K I, West N E et al.. Endothelial cell protection against ischemia/reperfusion injury by lecithinized superoxide dismutase.  Kidney Int. 2001;  60(2) 786-796
  • 76 Ishihara T, Tanaka K, Tasaka Y et al.. Therapeutic effect of lecithinized superoxide dismutase against colitis.  J Pharmacol Exp Ther. 2009;  328(1) 152-164
  • 77 Lee S, Murthy N. Targeted delivery of catalase and superoxide dismutase to macrophages using folate.  Biochem Biophys Res Commun. 2007;  360(1) 275-279
  • 78 Gow A, Ischiropoulos H. Super-SOD: superoxide dismutase chimera fights off inflammation.  Am J Physiol Lung Cell Mol Physiol. 2003;  284(6) L915-L916
  • 79 Bonder C S, Knight D, Hernandez-Saavedra D, McCord J M, Kubes P. Chimeric SOD2/3 inhibits at the endothelial-neutrophil interface to limit vascular dysfunction in ischemia-reperfusion.  Am J Physiol Gastrointest Liver Physiol. 2004;  287(3) G676-G684
  • 80 Gao B, Flores S C, Leff J A, Bose S K, McCord J M. Synthesis and anti-inflammatory activity of a chimeric recombinant superoxide dismutase: SOD2/3.  Am J Physiol Lung Cell Mol Physiol. 2003;  284(6) L917-L925
  • 81 Grey M, Yainoy S, Prachayasittikul V, Bülow L. A superoxide dismutase-human hemoglobin fusion protein showing enhanced antioxidative properties.  FEBS J. 2009;  276(21) 6195-6203
  • 82 Lu M, Gong X, Lu Y, Guo J, Wang C, Pan Y. Molecular cloning and functional characterization of a cell-permeable superoxide dismutase targeted to lung adenocarcinoma cells. Inhibition cell proliferation through the Akt/p27kip1 pathway.  J Biol Chem. 2006;  281(19) 13620-13627
  • 83 Jiang J, Kurnikov I, Belikova N A et al.. Structural requirements for optimized delivery, inhibition of oxidative stress, and antiapoptotic activity of targeted nitroxides.  J Pharmacol Exp Ther. 2007;  320(3) 1050-1060
  • 84 Nishikawa M, Hashida M, Takakura Y. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis.  Adv Drug Deliv Rev. 2009;  61(4) 319-326
  • 85 Muzykantov V R, Christofidou-Solomidou M, Balyasnikova I et al.. Streptavidin facilitates internalization and pulmonary targeting of an anti-endothelial cell antibody (platelet-endothelial cell adhesion molecule 1): a strategy for vascular immunotargeting of drugs.  Proc Natl Acad Sci U S A. 1999;  96(5) 2379-2384
  • 86 Christofidou-Solomidou M, Scherpereel A, Wiewrodt R et al.. PECAM-directed delivery of catalase to endothelium protects against pulmonary vascular oxidative stress.  Am J Physiol Lung Cell Mol Physiol. 2003;  285(2) L283-L292
  • 87 Shuvaev V V, Dziubla T, Wiewrodt R, Muzykantov V R. Streptavidin-biotin crosslinking of therapeutic enzymes with carrier antibodies: nanoconjugates for protection against endothelial oxidative stress.  Methods Mol Biol. 2004;  283 3-19
  • 88 Shuvaev V V, Christofidou-Solomidou M, Bhora F et al.. Targeted detoxification of selected reactive oxygen species in the vascular endothelium.  J Pharmacol Exp Ther. 2009;  331(2) 404-411
  • 89 Kozower B D, Christofidou-Solomidou M, Sweitzer T D et al.. Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury.  Nat Biotechnol. 2003;  21(4) 392-398
  • 90 Shuvaev V V, Tliba S, Nakada M, Albelda S M, Muzykantov V R. Platelet-endothelial cell adhesion molecule-1-directed endothelial targeting of superoxide dismutase alleviates oxidative stress caused by either extracellular or intracellular superoxide.  J Pharmacol Exp Ther. 2007;  323(2) 450-457
  • 91 Muro S, Mateescu M, Gajewski C, Robinson M, Muzykantov V R, Koval M. Control of intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na+/H+ exchanger proteins.  Am J Physiol Lung Cell Mol Physiol. 2006;  290(5) L809-L817
  • 92 Muro S, Gajewski C, Koval M, Muzykantov V R. ICAM-1 recycling in endothelial cells: a novel pathway for sustained intracellular delivery and prolonged effects of drugs.  Blood. 2005;  105(2) 650-658
  • 93 Dziubla T D, Karim A, Muzykantov V R. Polymer nanocarriers protecting active enzyme cargo against proteolysis.  J Control Release. 2005;  102(2) 427-439
  • 94 Simone E A, Dziubla T D, Arguiri E et al.. Loading PEG-catalase into filamentous and spherical polymer nanocarriers.  Pharm Res. 2009;  26(1) 250-260
  • 95 Dziubla T D, Shuvaev V V, Hong N K et al.. Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies.  Biomaterials. 2008;  29(2) 215-227
  • 96 Esmon C T. Inflammation and thrombosis.  J Thromb Haemost. 2003;  1(7) 1343-1348
  • 97 Bode C, Meinhardt G, Runge M S et al.. Platelet-targeted fibrinolysis enhances clot lysis and inhibits platelet aggregation.  Circulation. 1991;  84 805-813
  • 98 Runge M S, Quertermous T, Zavodny P J et al.. A recombinant chimeric plasminogen activator with high affinity for fibrin has increased thrombolytic potency in vitro and in vivo.  Proc Natl Acad Sci U S A. 1991;  88(22) 10337-10341
  • 99 Waugh J M, Kattash M, Li J et al.. Gene therapy to promote thromboresistance: local overexpression of tissue plasminogen activator to prevent arterial thrombosis in an in vivo rabbit model.  Proc Natl Acad Sci U S A. 1999;  96(3) 1065-1070
  • 100 Topol E J, Byzova T V, Plow E F. Platelet GPIIb-IIIa blockers.  Lancet. 1999;  353(9148) 227-231
  • 101 Muzykantov V R, Barnathan E S, Atochina E N, Kuo A, Danilov S M, Fisher A B. Targeting of antibody-conjugated plasminogen activators to the pulmonary vasculature.  J Pharmacol Exp Ther. 1996;  279(2) 1026-1034
  • 102 Murciano J C, Harshaw D W, Ghitescu L, Danilov S M, Muzykantov V R. Vascular immunotargeting to endothelial surface in a specific macrodomain in alveolar capillaries.  Am J Respir Crit Care Med. 2001;  164(7) 1295-1302
  • 103 Ding B S, Zhou Y J, Chen X Y et al.. Lung endothelium targeting for pulmonary embolism thrombolysis.  Circulation. 2003;  108(23) 2892-2898
  • 104 Muro S, Cui X, Gajewski C, Murciano J C, Muzykantov V R, Koval M. Slow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress.  Am J Physiol Cell Physiol. 2003;  285(5) C1339-C1347
  • 105 Idell S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury.  Crit Care Med. 2003;  31(4, suppl) S213-S220
  • 106 Levi M, Schultz M. The inflammation-coagulation axis as an important intermediate pathway in acute lung injury.  Crit Care. 2008;  12(2) 144
  • 107 Wu S Q, Aird W C. Thrombin, TNF-alpha, and LPS exert overlapping but nonidentical effects on gene expression in endothelial cells and vascular smooth muscle cells.  Am J Physiol Heart Circ Physiol. 2005;  289 H873-H885
  • 108 Ding B S, Gottstein C, Grunow A et al.. Endothelial targeting of a recombinant construct fusing a PECAM-1 single-chain variable antibody fragment (scFv) with prourokinase facilitates prophylactic thrombolysis in the pulmonary vasculature.  Blood. 2005;  106(13) 4191-4198
  • 109 Stump D C, Lijnen H R, Collen D. Purification and characterization of a novel low molecular weight form of single-chain urokinase-type plasminogen activator.  J Biol Chem. 1986;  261(36) 17120-17126
  • 110 Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator.  Nat Rev Mol Cell Biol. 2002;  3(12) 932-943
  • 111 Liu J N, Gurewich V. Fragment E-2 from fibrin substantially enhances pro-urokinase-induced Glu-plasminogen activation. A kinetic study using the plasmin-resistant mutant pro-urokinase Ala-158-rpro-UK.  Biochemistry. 1992;  31(27) 6311-6317
  • 112 Ichinose A, Fujikawa K, Suyama T. The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin.  J Biol Chem. 1986;  261(8) 3486-3489
  • 113 Yang W P, Goldstein J, Procyk R, Matsueda G R, Shaw S Y. Design and evaluation of a thrombin-activable plasminogen activator.  Biochemistry. 1994;  33 606-612
  • 114 Ding B S, Hong N, Murciano J C et al.. Prophylactic thrombolysis by thrombin-activated latent prourokinase targeted to PECAM-1 in the pulmonary vasculature.  Blood. 2008;  111(4) 1999-2006
  • 115 Ding B S, Hong N K, Christofidou-Solomidou M et al.. Anchoring fusion thrombomodulin to the endothelial lumen protects against injury-induced lung thrombosis and inflammation.  Am J Respir Crit Care Med. 2009;  180(3) 247-256
  • 116 Wang Y X, Wu C, Vincelette J et al.. Amplified anticoagulant activity of tissue factor-targeted thrombomodulin: in-vivo validation of a tissue factor-neutralizing antibody fused to soluble thrombomodulin.  Thromb Haemost. 2006;  96(3) 317-324

Vladimir R MuzykantovM.D. 

IFEM, University of Pennsylvania Medical Center

1 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068

Email: muzykant@mail.med.upenn.edu