Subscribe to RSS
DOI: 10.1055/s-0030-1253456
Leveraging Molecular Heterogeneity of the Vascular Endothelium for Targeted Drug Delivery and Imaging
Publication History
Publication Date:
20 May 2010 (online)
ABSTRACT
Patterns of luminal vascular protein expression vary according to tissue of origin, and these so-called vascular zip codes play an important role in the maintenance of normal physiological processes in multiorgan species. These zip codes are also often modified in response to pathology and play a critical role in the response to and recovery from disease. These differentially expressed proteins offer opportunities for organ- and disease-specific ligand-targeted molecular delivery, offering clear pharmacologic advantages to traditional systemic drug delivery. However, this approach depends on the availability of frequently elusive targets. Combinatorial screening is a valuable tool for identifying optimal ligands for targeted delivery to the vasculature, especially when adapted for in vivo selection. Here we discuss molecular heterogeneity of the vascular endothelium and the use of phage display as a combinatorial screening method to exploit this heterogeneity for tissue or disease-specific vascular targeting. We also highlight applications of this approach for both drug delivery and molecular imaging.
KEYWORDS
Vasculature - targeting - phage display
REFERENCES
- 1 Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature. 1996; 380(6572) 364-366
- 2 Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest. 1998; 102(2) 430-437
- 3 Salmi M, Jalkanen S. How do lymphocytes know where to go: current concepts and enigmas of lymphocyte homing. Adv Immunol. 1997; 64 139-218
- 4 Springer T A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994; 76(2) 301-314
- 5 Katayama Y, Hidalgo A, Furie B C, Vestweber D, Furie B, Frenette P S. PSGL-1 participates in E-selectin-mediated progenitor homing to bone marrow: evidence for cooperation between E-selectin ligands and alpha4 integrin. Blood. 2003; 102(6) 2060-2067
- 6 Lapidot T, Dar A, Kollet O. How do stem cells find their way home?. Blood. 2005; 106(6) 1901-1910
- 7 Hanahan D, Weinberg R A. The hallmarks of cancer. Cell. 2000; 100(1) 57-70
- 8 Folkman J. What is the role of endothelial cells in angiogenesis?. Lab Invest. 1984; 51(6) 601-604
- 9 Gibbs W J, Drew R H, Perfect J R. Liposomal amphotericin B: clinical experience and perspectives. Expert Rev Anti Infect Ther. 2005; 3(2) 167-181
- 10 Stavridi F, Palmieri C. Efficacy and toxicity of nonpegylated liposomal doxorubicin in breast cancer. Expert Rev Anticancer Ther. 2008; 8(12) 1859-1869
- 11 Arap M A, Lahdenranta J, Mintz P J et al.. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell. 2004; 6(3) 275-284
- 12 Arap W, Haedicke W, Bernasconi M et al.. Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci U S A. 2002; 99(3) 1527-1531
- 13 Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998; 279(5349) 377-380
- 14 Giordano R J, Lahdenranta J, Zhen L et al.. Targeted induction of lung endothelial cell apoptosis causes emphysema-like changes in the mouse. J Biol Chem. 2008; 283(43) 29447-29460
- 15 Hajitou A, Trepel M, Lilley C E et al.. A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell. 2006; 125(2) 385-398
- 16 Kolonin M G, Saha P K, Chan L, Pasqualini R, Arap W. Reversal of obesity by targeted ablation of adipose tissue. Nat Med. 2004; 10(6) 625-632
- 17 Lahdenranta J, Sidman R L, Pasqualini R, Arap W. Treatment of hypoxia-induced retinopathy with targeted proapoptotic peptidomimetic in a mouse model of disease. FASEB J. 2007; 21(12) 3272-3278
- 18 Oh P, Li Y, Yu J et al.. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature. 2004; 429(6992) 629-635
- 19 Paoloni M C, Tandle A, Mazcko C et al.. Launching a novel preclinical infrastructure: comparative oncology trials consortium directed therapeutic targeting of TNFalpha to cancer vasculature. PLoS One. 2009; 4(3) e4972
- 20 Veenendaal L M, Jin H, Ran S et al.. In vitro and in vivo studies of a VEGF121/rGelonin chimeric fusion toxin targeting the neovasculature of solid tumors. Proc Natl Acad Sci U S A. 2002; 99(12) 7866-7871
- 21 Zurita A J, Troncoso P, Cardó-Vila M, Logothetis C J, Pasqualini R, Arap W. Combinatorial screenings in patients: the interleukin-11 receptor alpha as a candidate target in the progression of human prostate cancer. Cancer Res. 2004; 64(2) 435-439
- 22 Carson-Walter E B, Watkins D N, Nanda A, Vogelstein B, Kinzler K W, St Croix B. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res. 2001; 61(18) 6649-6655
- 23 St Croix B, Rago C, Velculescu V et al.. Genes expressed in human tumor endothelium. Science. 2000; 289(5482) 1197-1202
- 24 Roesli C, Neri D, Rybak J N. In vivo protein biotinylation and sample preparation for the proteomic identification of organ- and disease-specific antigens accessible from the vasculature. Nat Protoc. 2006; 1 192-199
- 25 Scott J K, Smith G P. Searching for peptide ligands with an epitope library. Science. 1990; 249(4967) 386-390
- 26 Smith G P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985; 228(4705) 1315-1317
- 27 Smith G P, Scott J K. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 1993; 217 228-257
- 28 Jaalouk D E, Ozawa M G, Sun J et al.. The original Pathologische Anatomie Leiden-Endothelium monoclonal antibody recognizes a vascular endothelial growth factor binding site within neuropilin-1. Cancer Res. 2007; 67(20) 9623-9629
- 29 Mintz P J, Kim J, Do K A et al.. Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol. 2003; 21(1) 57-63
- 30 Vidal C I, Mintz P J, Lu K et al.. An HSP90-mimic peptide revealed by fingerprinting the pool of antibodies from ovarian cancer patients. Oncogene. 2004; 23(55) 8859-8867
- 31 Barker T H, Baneyx G, Cardó-Vila M et al.. SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J Biol Chem. 2005; 280(43) 36483-36493
- 32 Cardó-Vila M, Arap W, Pasqualini R. Alpha v beta 5 integrin-dependent programmed cell death triggered by a peptide mimic of annexin V. Mol Cell. 2003; 11(5) 1151-1162
- 33 Kato-Takagaki K, Mizukoshi Y, Yoshizawa Y et al.. Structural and interaction analysis of glycoprotein VI-binding peptide selected from a phage display library. J Biol Chem. 2009; 284(16) 10720-10727
- 34 Koivunen E, Arap W, Valtanen H et al.. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol. 1999; 17(8) 768-774
- 35 Kzhyshkowska J, Workman G, Cardó-Vila M et al.. Novel function of alternatively activated macrophages: stabilin-1-mediated clearance of SPARC. J Immunol. 2006; 176(10) 5825-5832
- 36 O'Neil K T, Hoess R H, Jackson S A, Ramachandran N S, Mousa S A, DeGrado W F. Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins. 1992; 14(4) 509-515
- 37 Smith G P, Schultz D A, Ladbury J E. A ribonuclease S-peptide antagonist discovered with a bacteriophage display library. Gene. 1993; 128(1) 37-42
- 38 Tamm I, Trepel M, Cardó-Vila M et al.. Peptides targeting caspase inhibitors. J Biol Chem. 2003; 278(16) 14401-14405
- 39 Koivunen E, Wang B, Ruoslahti E. Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol. 1994; 124(3) 373-380
- 40 McConnell S J, Dinh T, Le M H et al.. Isolation of erythropoietin receptor agonist peptides using evolved phage libraries. Biol Chem. 1998; 379(10) 1279-1286
- 41 Goodson R J, Doyle M V, Kaufman S E, Rosenberg S. High-affinity urokinase receptor antagonists identified with bacteriophage peptide display. Proc Natl Acad Sci U S A. 1994; 91(15) 7129-7133
- 42 Doorbar J, Winter G. Isolation of a peptide antagonist to the thrombin receptor using phage display. J Mol Biol. 1994; 244(4) 361-369
- 43 Gui J, Moyana T, Malcolm B, Xiang J. Identification of a decapeptide with the binding reactivity for tumor-associated TAG72 antigen from a phage displayed library. Proteins. 1996; 24(3) 352-358
- 44 Fukuda M N, Ohyama C, Lowitz K et al.. A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res. 2000; 60(2) 450-456
- 45 Giordano R J, Cardó-Vila M, Lahdenranta J, Pasqualini R, Arap W. Biopanning and rapid analysis of selective interactive ligands. Nat Med. 2001; 7(11) 1249-1253
- 46 Nishimura S, Takahashi S, Kamikatahira H et al.. Combinatorial targeting of the macropinocytotic pathway in leukemia and lymphoma cells. J Biol Chem. 2008; 283(17) 11752-11762
- 47 Giordano R J, Anobom C D, Cardó-Vila M et al.. Structural basis for the interaction of a vascular endothelial growth factor mimic peptide motif and its corresponding receptors. Chem Biol. 2005; 12(10) 1075-1083
- 48 Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003; 3(7) 643-651
- 49 Folkman J. Angiogenesis: an organizing principle for drug discovery?. Nat Rev Drug Discov. 2007; 6(4) 273-286
- 50 Kolonin M G, Bover L, Sun J et al.. Ligand-directed surface profiling of human cancer cells with combinatorial peptide libraries. Cancer Res. 2006; 66(1) 34-40
- 51 Arap M A, Lahdenranta J, Hajitou A et al.. Model of unidirectional transluminal gene transfer. Mol Ther. 2004; 9(2) 305-310
- 52 Ardelt P U, Wood C G, Chen L et al.. Targeting urothelium: ex vivo assay standardization and selection of internalizing ligands. J Urol. 2003; 169(4) 1535-1540
- 53 Shukla G S, Krag D N. Selection of tumor-targeting agents on freshly excised human breast tumors using a phage display library. Oncol Rep. 2005; 13(4) 757-764
- 54 Lewis V O, Ozawa M G, Deavers M T et al.. The interleukin-11 receptor alpha as a candidate ligand-directed target in osteosarcoma: consistent data from cell lines, orthotopic models, and human tumor samples. Cancer Res. 2009; 69(5) 1995-1999
- 55 Yao V J, Ozawa M G, Trepel M, Arap W, McDonald D M, Pasqualini R. Targeting pancreatic islets with phage display assisted by laser pressure catapult microdissection. Am J Pathol. 2005; 166(2) 625-636
- 56 Gordon P H, Moore D H, Miller R G Western ALS Study Group et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 2007; 6(12) 1045-1053
- 57 Benatar M. Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis. 2007; 26(1) 1-13
- 58 Arap W, Kolonin M G, Trepel M et al.. Steps toward mapping the human vasculature by phage display. Nat Med. 2002; 8(2) 121-127
- 59 Pentz R D, Flamm A L, Pasqualini R, Logothetis C J, Arap W. Revisiting ethical guidelines for research with terminal wean and brain-dead participants. Hastings Cent Rep. 2003; 33(1) 20-26
- 60 Kolonin M G, Sun J, Do K A et al.. Synchronous selection of homing peptides for multiple tissues by in vivo phage display. FASEB J. 2006; 20(7) 979-981
- 61 Hajitou A, Pasqualini R, Arap W. Vascular targeting: recent advances and therapeutic perspectives. Trends Cardiovasc Med. 2006; 16(3) 80-88
- 62 Kolonin M, Pasqualini R, Arap W. Molecular addresses in blood vessels as targets for therapy. Curr Opin Chem Biol. 2001; 5(3) 308-313
- 63 Ozawa M G, Zurita A J, Dias-Neto E et al.. Beyond receptor expression levels: the relevance of target accessibility in ligand-directed pharmacodelivery systems. Trends Cardiovasc Med. 2008; 18(4) 126-132
- 64 Pasqualini R, Arap W. Profiling the molecular diversity of blood vessels. Cold Spring Harb Symp Quant Biol. 2002; 67 223-225
- 65 Trepel M, Arap W, Pasqualini R. In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol. 2002; 6(3) 399-404
- 66 Trepel M, Pasqualini R, Arap W. Chapter 4. Screening phage-display Peptide libraries for vascular targeted peptides. Methods Enzymol. 2008; 445 83-106
- 67 Neri D, Bicknell R. Tumour vascular targeting. Nat Rev Cancer. 2005; 5(6) 436-446
- 68 Hajitou A, Lev D C, Hannay J A et al.. A preclinical model for predicting drug response in soft-tissue sarcoma with targeted AAVP molecular imaging. Proc Natl Acad Sci U S A. 2008; 105(11) 4471-4476
- 69 Hajitou A, Rangel R, Trepel M et al.. Design and construction of targeted AAVP vectors for mammalian cell transduction. Nat Protoc. 2007; 2 523-531
- 70 Souza G R, Yonel-Gumruk E, Fan D et al.. Bottom-up assembly of hydrogels from bacteriophage and Au nanoparticles: the effect of cis- and trans-acting factors. PLoS One. 2008; 3(5) e2242
- 71 Souza G R, Christianson D R, Staquicini F I et al.. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci U S A. 2006; 103(5) 1215-1220
- 72 Souza G R, Levin C S, Hajitou A, Pasqualini R, Arap W, Miller J H. In vivo detection of gold-imidazole self-assembly complexes: NIR-SERS signal reporters. Anal Chem. 2006; 78(17) 6232-6237
- 73 Barbas C, Burton D, Silverman G, Scott J. Phage Display: A Laboratory Manual. New York, NY; Cold Spring Harbor Laboratory Press 2001
- 74 Marchiò S, Lahdenranta J, Schlingemann R O et al.. Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell. 2004; 5(2) 151-162
- 75 Koivunen E, Wang B, Ruoslahti E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (N Y). 1995; 13(3) 265-270
- 76 Pasqualini R, Koivunen E, Kain R et al.. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000; 60(3) 722-727
- 77 Mintz P J, Cardó-Vila M, Ozawa M G et al.. An unrecognized extracellular function for an intracellular adapter protein released from the cytoplasm into the tumor microenvironment. Proc Natl Acad Sci U S A. 2009; 106(7) 2182-2187
- 78 Burg M A, Pasqualini R, Arap W, Ruoslahti E, Stallcup W B. NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res. 1999; 59(12) 2869-2874
Renata PasqualiniPh.D.
David H. Koch Center, The University of Texas M. D. Anderson Cancer Center
1515 Holcombe Boulevard, Houston, TX 77030
Email: rpasqual@mdanderson.org