Zusammenfassung
Während der letzten Jahre hat es bedeutende Forschritte
im Verständnis des Aufbaus und der Pathomechanismen des
renalen Glomerulus gegeben. In dieser Übersichtsarbeit
wird eine Auswahl neuer Aspekte beleuchtet: 1.) Die Funktionsweise
der glomerulären Filtrationsbarriere ist bis heute noch
nicht gänzlich aufgeklärt, obwohl mittlerweile
der anatomische Aufbau auch auf molekularer Ebene gut bekannt ist.
2.) Im Glomerulus vermittelt vascular endothelial growth
factor (VEGF) ein von den Podozyten ausgehendes, räumliches
Signal, das entscheidend den Aufbau des Glomerulus beeinflusst.
3.) Die Theorie des subpodocyte space liefert
eine neue Erklärung für den effektiven Rücktransport von
VEGF gegen den Filtrationsstrom von den Podozyten zu den Endothelzellen.
4.) Neu entwickelte transgene Mausmodelle haben nach den Podozyten
nun auch die Parietalzellen einer systematischen funktionellen Erforschung
zugänglich gemacht. Parietalzellen stellen möglicherweise
eine intrarenale Progenitorzellpopulation für die Regeneration
von Podozyten dar. 5.) Parietalzellen spielen eine bislang unterschätzte
Rolle bei verschiedenen glomerulären Erkrankungen. So werden
zelluläre Halbmonde im Rahmen einer rapid progressiven
Glomerulonephritis vor allem von glomerulären Parietalzellen
ausgebildet.
Abstract
In recent years, significant progress has been made in understanding
the structure and pathomechanisms of the glomerulus of the kidney. Some
of these more recent advances and open questions are discussed in
this review: 1.) The functioning of the glomerular filter still
remains incompletely understood, although the microanatomy and molecular
biology of the glomerular filter has been investigated in great
detail. 2.) Vascular endothelial growth factor (VEGF) has been shown
to mediate spacial clues that are essential for the polarized distribution
of the cells within the glomerulus. 3.) A novel theory of the subpodocyte
space offers a novel explanation for the flux of VEGF from the podocytes
against the bulk flow of the filtrate to the glomerular endothelial
cells. 4.) Novel transgenic mouse models have enabled us to investigate
the functional role not only of podocytes but more recently also
of parietal cells which might serve as an intrarenal progenitor
cell population. 5.) Parietal cells play a so far under-recognized
role in various glomerular diseases. In rapid progressive glomerulonephritis,
cellular crescents originate predominantly from parietal cells.
Schlüsselwörter
Glomerulus - Filtrationsbarriere - VEGF - Parietalzellen - Podozyten
Keywords
glomerulus - filtration barrier - VEGF - parietal cells - podocytes
Literatur
-
1
Appel D, Kershaw D B, Smeets B. et al .
Recruitment of podocytes from glomerular
parietal epithelial cells.
J Am Soc Nephrol.
2009;
20
333-343
-
2
Comper W D, Hilliard L M, Nikolic-Paterson D J, Russo L M.
Disease-dependent mechanisms of albuminuria.
Am J
Physiol Renal Physiol.
2008;
295
F1589-600
-
3
Deen W M, Bohrer M P, Brenner B M.
Macromolecule transport across glomerular
capillaries: application of pore theory.
Kidney Int.
1979;
16
353-365
-
4
Duffield J S, Tipping P G, Kipari T. et al .
Conditional ablation of macrophages halts
progression of crescentic glomerulonephritis.
Am J Pathol.
2005;
167
1207-1219
-
5
Eremina V, Jefferson J A, Kowalewska J. et al .
VEGF inhibition and renal thrombotic microangiopathy.
N Engl J Med.
2008;
358
1129-1136
-
6
Eremina V, Sood M, Haigh J. et
al .
Glomerular-specific alterations of VEGF-A expression
lead to distinct congenital and acquired renal diseases.
J
Clin Invest.
2003;
111
707-716
-
7
Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W.
Vascular endothelial growth
factor induces endothelial fenestrations in vitro.
J Cell
Biol.
1998;
140
947-959
-
8
Fries J W, Sandstrom D J, Meyer T W, Rennke H G.
Glomerular
hypertrophy and epithelial cell injury modulate progressive glomerulosclerosis
in the rat.
Lab Invest.
1989;
60
205-218
-
9
Fujigaki Y, Nagase M, Kobayasi S, Hidaka S, Shimomura M, Hishida A.
Intra-GBM site of the
functional filtration barrier for endogenous proteins in rats.
Kidney Int.
1993;
43
567-574
-
10
Gibson I W, Gardiner D S, Downie I, Downie T T, More I A, Lindop G B.
A
comparative study of the glomerular peripolar cell and the renin-secreting cell
in twelve mammalian species.
Cell Tissue Res.
1994;
277
385-390
-
11
Hakroush S, Moeller M J, Theilig F. et al .
Effects of increased renal tubular vascular
endothelial growth factor (VEGF) on fibrosis, cyst formation, and
glomerular disease.
Am J Pathol.
2009;
175
1883-1895
-
12
Haraldsson B, Barisoni L, Quaggin S E.
Reply to: VEGF inhibition and renal thrombotic microangiopathy.
New Engl J Med.
2008;
359
205-207
-
13
Haraldsson B, Nystrom J, Deen W M.
Properties of the glomerular barrier and mechanisms of proteinuria.
Physiol Rev.
2008;
88
451-487
-
14
Huber T B, Benzing T.
The slit diaphragm:
a signaling platform to regulate podocyte function.
Curr
Opin Nephrol Hypertens.
2005;
14
211-216
-
15
Kamba T, Tam B Y, Hashizume H. et al .
VEGF-dependent plasticity of fenestrated
capillaries in the normal adult microvasculature.
Am J Physiol
Heart Circ Physiol.
2006;
290
H560-576
-
16 Kriz W, Kaissling B. Structural organization
of the mammalian kidney. In: Seldin DW, Giebisch G The
Kidney: Physiology and Pathophysiology. New York: Raven Press; 1992: 707-777
-
17
Kriz W, LeHir M.
Pathways to nephron loss starting
from glomerular diseases-insights from animal models.
Kidney
Int.
2005;
67
404-419
-
18
Kriz W, Lemley K V.
The role of the
podocyte in glomerulosclerosis.
Curr Opin Nephrol Hypertens.
1999;
8
489-497
-
19
LeHir M, Besse-Eschmann V.
A novel mechanism
of nephron loss in a murine model of crescentic glomerulonephritis.
Kidney Int.
2003;
63
591-599
-
20
Macconi D, Sangalli F, Bonomelli M. et al .
Podocyte repopulation contributes to regression
of glomerular injury induced by ACE inhibition.
Am J Pathol.
2009;
174
797-807
-
21
Moeller M J, Kovari I A, Holzman L B.
Evaluation of a new tool for exploring podocyte
biology: mouse Nphs1 5’ flanking region drives LacZ expression
in podocytes.
J Am Soc Nephrol.
2000;
11
2306-2314
-
22
Moeller M J, Sanden S K, Soofi A, Wiggins R C, Holzman L B.
Podocyte-specific expression of cre recombinase
in transgenic mice.
Genesis.
2003;
35
39-42
-
23
Moeller M J, Soofi A, Braun G S. et al .
Protocadherin FAT1 binds Ena/VASP
proteins and is necessary for actin dynamics and cell polarization.
EMBO J.
2004;
23
3769-3779
-
24
Moeller M J, Soofi A, Hartmann I. et al .
Podocytes populate cellular crescents in
a murine model of inflammatory glomerulonephritis.
J Am Soc
Nephrol.
2004;
15
61-67
-
25
Neal C R, Muston P R, Njegovan D. et al .
Glomerular filtration into the subpodocyte
space is highly restricted under physiological perfusion conditions.
Am J Physiol Renal Physiol.
2007;
293
F1787-1798
-
26
Pabst R, Sterzel R B.
Cell renewal of
glomerular cell types in normal rats. An autoradiographic analysis.
Kidney Int.
1983;
24
626-31
-
27
Remuzzi A, Gagliardini E, Sangalli F. et al .
ACE inhibition reduces glomerulosclerosis
and regenerates glomerular tissue in a model of progressive renal
disease.
Kidney Int.
2006;
69
1124-30
-
28
Rippe B, Haraldsson B.
Transport of macromolecules
across microvascular walls: the two-pore theory.
Physiol
Rev.
1994;
74
163-219
-
29
Ronconi E, Sagrinati C, Angelotti M L. et al .
Regeneration of glomerular podocytes
by human renal progenitors.
J Am Soc Nephrol.
2009;
20
322-332
-
30
Rostgaard J, Qvortrup K.
Sieve plugs in fenestrae
of glomerular capillaries – site of the filtration barrier?.
Cells Tissues Organs.
2002;
170
132-138
-
31
Russo L M, Sandoval R M, McKee M. et al .
The normal kidney filters nephrotic levels
of albumin retrieved by proximal tubule cells: retrieval is disrupted
in nephrotic states.
Kidney Int.
2007;
71
504-513
-
32
Ryan G B, Karnovsky M J.
Distribution
of endogenous albumin in the rat glomerulus: role of hemodynamic
factors in glomerular barrier function.
Kidney Int.
1976;
9
36-45
-
33
Shigehara T, Zaragoza C, Kitiyakara C. et al .
Inducible podocyte-specific gene expression
in transgenic mice.
J Am Soc Nephrol.
2003;
14
1998-2003
-
34
Smeets B, Angelotti M L, Rizzo P. et al .
Renal progenitor cells contribute to hyperplastic
lesions of podocytopathies and crescentic glomerulonephritis.
J Am Soc Nephrol.
2009;
20
2593-2603
-
35
Smeets B, Uhlig S, Fuss A. et
al .
Tracing the origin of glomerular extracapillary
lesions from parietal epithelial cells.
J Am Soc Nephrol.
2009;
20
2604-2615
-
36
Smithies O.
Why the kidney glomerulus does not clog: a gel permeation/diffusion
hypothesis of renal function.
Proc Nat Acad Sci.
2003;
100
4108-4113
-
37
Tryggvason K, Wartiovaara J.
How does the kidney
filter plasma?.
Physiology (Bethesda).
2005;
20
96-101
-
38
Wartiovaara J, Ofverstedt L G, Khoshnoodi J. et al .
Nephrin strands contribute
to a porous slit diaphragm scaffold as revealed by electron tomography.
J Clin Invest.
2004;
114
1475-1483
-
39
Wharram B L, Goyal M, Wiggins J E. et al .
Podocyte depletion causes glomerulosclerosis:
diphtheria toxin-induced podocyte depletion in rats expressing human
diphtheria toxin receptor transgene.
J Am Soc Nephrol.
2005;
16
2941-2952
-
40
Wolgast M, Kallskog O, Wahlstrom H.
Characteristics of the glomerular capillary membrane of the
rat kidney as a hydrated gel. II. On the validity of the model.
Acta Physiol Scand.
1996;
158
225-232
-
41
Wong M A, Cui S, Quaggin S E.
Identification and characterization of a glomerular-specific
promoter from the human nephrin gene.
Am J Physiol Renal
Physiol.
2000;
279
F1027-1032
PD Dr. med. Marcus J. Moeller
Medizinische Klinik 2, Nephrologie und Klinische Immunologie, Universitätsklinikum
der RWTH Aachen
Pauwelsstr. 30
52074 Aachen
Email: mmoeller@ukaachen.de