Abstract
The heterogeneous plasma fraction of HDL-cholesterol (HDL-C) is the most important „endogenous negative“ risk factor for coronary artery disease. Although the primary target for therapy remains the reduction of LDL-C, HDL-C raising strategies may offer additional benefit. While prospective clinical studies are under way to test this issue, new pharmaceutical agents are currently being developed to effectively increase plasma HDL-C or improve HDL function. In this review, we discuss the latest developments in the field.
Literatur
-
1
di Angelantonio E, Sarwar N, Perry P et al.
Major lipids, apolipoproteins, and risk of vascular disease.
Jama.
2009;
302
1993-2000
-
2
Baigent C, Blackwell L, Emberson J et al.
Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials.
Lancet.
;
376
1670-1681
-
3
Chapman M J, Ginsberg H N, Amarenco P et al.
Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management.
Eur Heart J.
2011;
32
1345-1361
-
4
Rosenson R S, Brewer Jr. H B, Chapman M J et al.
HDL Measures, Particle Heterogeneity, Proposed Nomenclature, and Relation to Atherosclerotic Cardiovascular Events.
Clin Chem.
2011;
57
392-410
-
5
von Eckardstein A, Hersberger M, Rohrer L.
Current understanding of the metabolism and biological actions of HDL.
Curr Opin Clin Nutr Metab Care.
2005;
8
147-152
-
6
Kontush A, Chapman M J.
Antiatherogenic small, dense HDL--guardian angel of the arterial wall?.
Nat Clin Pract Cardiovasc Med.
2006;
3
144-153
-
7
Oram J F, Vaughan A M.
ATP-Binding cassette cholesterol transporters and cardiovascular disease.
Circ Res.
2006;
99
1031-1043
-
8
de la Llera-Moya M, Drazul-Schrader D, Asztalos B F et al.
The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages.
Arterioscler Thromb Vasc Biol.
;
30
796-801
-
9
van Dam M J, de Groot E, Clee S M et al.
Association between increased arterial-wall thickness and impairment in ABCA1-driven cholesterol efflux: an observational study.
Lancet.
2002;
359
37-42
-
10
Shaw J A, Bobik A, Murphy A et al.
Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque.
Circ Res.
2008;
103
1084-1091
-
11
Yuhanna I S, Zhu Y, Cox B E et al.
High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase.
Nat Med.
2001;
7
853-857
-
12
Nofer J R, van der Giet M, Tolle M et al.
HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3.
J Clin Invest.
2004;
113
569-581
-
13
Kuvin J T, Patel A R, Sidhu M et al.
Relation between high-density lipoprotein cholesterol and peripheral vasomotor function.
Am J Cardiol.
2003;
92
275-279
-
14
Spieker L E, Sudano I, Hurlimann D et al.
High-density lipoprotein restores endothelial function in hypercholesterolemic men.
Circulation.
2002;
105
1399-1402
-
15
Mackness M I, Arrol S, Abbott C et al.
Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase.
Atherosclerosis.
1993;
104
129-135
-
16
Miura S, Fujino M, Matsuo Y et al.
High density lipoprotein-induced angiogenesis requires the activation of Ras/MAP kinase in human coronary artery endothelial cells.
Arterioscler Thromb Vasc Biol.
2003;
23
802-808
-
17
Barter P J.
Inhibition of endothelial cell adhesion molecule expression by high density lipoproteins.
Clin Exp Pharmacol Physiol.
1997;
24
286-287
-
18
Tolle M, Pawlak A, Schuchardt M et al.
HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant protein-1 production.
Arterioscler Thromb Vasc Biol.
2008;
28
1542-1548
-
19
Gharavi N M, Gargalovic P S, Chang I et al.
High-density lipoprotein modulates oxidized phospholipid signaling in human endothelial cells from proinflammatory to anti-inflammatory.
Arterioscler Thromb Vasc Biol.
2007;
27
1346-1353
-
20
Levkau B, Hermann S, Theilmeier G et al.
High-density lipoprotein stimulates myocardial perfusion in vivo.
Circulation.
2004;
110
3355-3359
-
21
Theilmeier G, Schmidt C, Herrmann J et al.
High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor.
Circulation.
2006;
114
1403-1409
-
22
Khera A V, Cuchel M, de la Llera-Moya M et al.
Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis.
N Engl J Med.
;
364
127-135
-
23
Nobecourt E, Jacqueminet S, Hansel B et al.
Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia.
Diabetologia.
2005;
48
529-538
-
24
Ansell B J, Navab M, Hama S et al.
Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment.
Circulation.
2003;
108
2751-2756
-
25
Besler C, Heinrich K, Rohrer L et al.
Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease.
J Clin Invest.
;
121
2693-2708
-
26
Vaisar T, Pennathur S, Green P S et al.
Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
J Clin Invest.
2007;
117
746-756
-
27
Pruzanski W, Stefanski E, de Beer F C et al.
Comparative analysis of lipid composition of normal and acute-phase high density lipoproteins.
J Lipid Res.
2000;
41
1035-1047
-
28
Bakogianni M C, Kalofoutis C A, Skenderi K I et al.
Clinical evaluation of plasma high-density lipoprotein subfractions (HDL2, HDL3) in non-insulin-dependent diabetics with coronary artery disease.
J Diabetes Complications.
2001;
15
265-269
-
29
Cheung M C, Brown B G, Wolf A C et al.
Altered particle size distribution of apolipoprotein A-I-containing lipoproteins in subjects with coronary artery disease.
J Lipid Res.
1991;
32
383-394
-
30
Zheng L, Nukuna B, Brennan M L et al.
Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease.
J Clin Invest.
2004;
114
529-541
-
31
Sattler K J, Elbasan S, Keul P et al.
Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease.
Basic Res Cardiol.
;
105
821-832
-
32
Wilson P W, D'Agostino R B, Levy D et al.
Prediction of coronary heart disease using risk factor categories.
Circulation.
1998;
97
1837-1847
-
33
Assmann G, Cullen P, Schulte H.
Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study.
Circulation.
2002;
105
310-315
-
34
Thomsen T F, Davidsen M, Ibsen H et al.
A new method for CHD prediction and prevention based on regional risk scores and randomized clinical trials; PRECARD and the Copenhagen Risk Score.
J Cardiovasc Risk.
2001;
8
291-297
-
35
Tunstall-Pedoe H, Woodward M.
By neglecting deprivation, cardiovascular risk scoring will exacerbate social gradients in disease.
Heart.
2006;
92
307-310
-
36
Graham I, Atar D, Borch-Johnsen K et al.
European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Fourth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts).
Eur J Cardiovasc Prev Rehabil.
2007;
14 (Suppl 2)
1-40
-
37
Gordon T, Castelli W P, Hjortland M C et al.
High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study.
Am J Med.
1977;
62
707-714
-
38
Sharrett A R, Ballantyne C M, Coady S A et al.
Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: The Atherosclerosis Risk in Communities (ARIC) Study.
Circulation.
2001;
104
1108-1113
-
39
Pletcher M J, Bibbins-Domingo K, Liu K et al.
Nonoptimal lipids commonly present in young adults and coronary calcium later in life: the CARDIA (Coronary Artery Risk Development in Young Adults) study.
Ann Intern Med.
;
153
137-146
-
40
Castelli W P, Doyle J T, Gordon T et al.
HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein phenotyping study.
Circulation.
1977;
55
767-772
-
41
Alber H F, Wanitschek M M, de Waha S et al.
High-density lipoprotein cholesterol, C-reactive protein, and prevalence and severity of coronary artery disease in 5641 consecutive patients undergoing coronary angiography.
Eur J Clin Invest.
2008;
38
372-380
-
42
Gordon D J, Probstfield J L, Garrison R J et al.
High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies.
Circulation.
1989;
79
8-15
-
43
Kreuzer J.
Medikamentöse Therapie von Fettstoffwechselstörungen.
Arzneimitteltherapie.
2011;
29
13-22
-
44 Neurologie DGf. Primär- und Sekundärprävention der zerebralen Ischämie. In: Diener H C, Putzki N Leitlinien für die Diagnostik und Therapie in der Neurologie. 4. überarb. Aufl. Stuttgart: Georg Thieme Verlag; 2008
-
45 Böhner H, Balzer K, Nowak T. Leitlinie Medikamentöse Therapie. 2008. http://www.gefaesschirurgie.de/fileadmin/websites/dgg/download/LL_Medikamentoese_Therapie_2011.pdf.14.11.2011
-
46
Drexel H, Amann F W, Rentsch K et al.
Relation of the level of high-density lipoprotein subfractions to the presence and extent of coronary artery disease.
Am J Cardiol.
1992;
70
436-440
-
47
Rossner S, Kjellin K G, Mettinger K L et al.
Normal serum-cholesterol but low H.D.L.-cholesterol concentration in young patients with ischaemic cerebrovascular disease.
Lancet.
1978;
1
577-579
-
48
Pauciullo P, Rubba P, Marotta G et al.
Abnormalities in serum lipoprotein composition in patients with premature coronary heart disease compared to serum lipid matched controls.
Atherosclerosis.
1988;
73
241-246
-
49
Jenkins P J, Harper R W, Nestel P J.
Severity of coronary atherosclerosis related to lipoprotein concentration.
Br Med J.
1978;
2
388-391
-
50
Phan B A, Chu B, Polissar N et al.
Association of high-density lipoprotein levels and carotid atherosclerotic plaque characteristics by magnetic resonance imaging.
Int J Cardiovasc Imaging.
2007;
23
337-342
-
51
Berge K G, Canner P L, Hainline A.
High-density lipoprotein cholesterol and prognosis after myocardial infarction.
Circulation.
1982;
66
1176-1178
-
52
Ghazzal Z B, Dhawan S S, Sheikh A et al.
Usefulness of serum high-density lipoprotein cholesterol level as an independent predictor of one-year mortality after percutaneous coronary interventions.
Am J Cardiol.
2009;
103
902-906
-
53
Amarenco P, Goldstein L B, Callahan A et al.
Baseline blood pressure, low- and high-density lipoproteins, and triglycerides and the risk of vascular events in the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial.
Atherosclerosis.
2009;
204
515-520
-
54
von Birgelen C, Hartmann M, Mintz G S et al.
Relation between progression and regression of atherosclerotic left main coronary artery disease and serum cholesterol levels as assessed with serial long-term (> or = 12 months) follow-up intravascular ultrasound.
Circulation.
2003;
108
2757-2762
-
55
Jafri H, Alsheikh-Ali A A, Karas R H.
Meta-analysis: statin therapy does not alter the association between low levels of high-density lipoprotein cholesterol and increased cardiovascular risk.
Ann Intern Med.
2010;
153
800-808
-
56
Wolfram R M, Brewer H B, Xue Z et al.
Impact of low high-density lipoproteins on in-hospital events and one-year clinical outcomes in patients with non-ST-elevation myocardial infarction acute coronary syndrome treated with drug-eluting stent implantation.
Am J Cardiol.
2006;
98
711-717
-
57
Sattler K J, Herrmann J, Yun S et al.
High high-density lipoprotein-cholesterol reduces risk and extent of percutaneous coronary intervention-related myocardial infarction and improves long-term outcome in patients undergoing elective percutaneous coronary intervention.
Eur Heart J.
2009;
30
1894-1902
-
58
Foody J M, Ferdinand F D, Pearce G L et al.
HDL cholesterol level predicts survival in men after coronary artery bypass graft surgery: 20-year experience from The Cleveland Clinic Foundation.
Circulation.
2000;
102 III
90-94
-
59
Barter P, Gotto A M, LaRosa J C et al.
HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events.
N Engl J Med.
2007;
357
1301-1310
-
60
Ballantyne C M, Raichlen J S, Nicholls S J et al.
Effect of rosuvastatin therapy on coronary artery stenoses assessed by quantitative coronary angiography: a study to evaluate the effect of rosuvastatin on intravascular ultrasound-derived coronary atheroma burden.
Circulation.
2008;
117
2458-2466
-
61
Robins S J, Collins D, Wittes J T et al.
Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial.
Jama.
2001;
285
1585-1591
-
62
Villines T C, Stanek E J, Devine P J et al.
The ARBITER 6-HALTS Trial (Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol 6-HDL and LDL Treatment Strategies in Atherosclerosis): final results and the impact of medication adherence, dose, and treatment duration.
J Am Coll Cardiol.
2010;
55
2721-2726
-
63
Fox K, Garcia M A, Ardissino D et al.
Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology.
Eur Heart J.
2006;
27
1341-1381
-
64
Poss J, Bohm M, Laufs U.
HDL and CETP in atherogenesis.
Dtsch Med Wochenschr.
2010;
135
188-192
-
65
Grover S A, Kaouache M, Joseph L et al.
Evaluating the incremental benefits of raising high-density lipoprotein cholesterol levels during lipid therapy after adjustment for the reductions in other blood lipid levels.
Arch Intern Med.
2009;
169
1775-1780
-
66
Goldenberg I, Benderly M, Sidi R et al.
Relation of clinical benefit of raising high-density lipoprotein cholesterol to serum levels of low-density lipoprotein cholesterol in patients with coronary heart disease (from the Bezafibrate Infarction Prevention Trial).
Am J Cardiol.
2009;
103
41-45
-
67
Durstine J L, Grandjean P W, Davis P G et al.
Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis.
Sports Med.
2001;
31
1033-1062
-
68
Kiens B, Jorgensen I, Lewis S et al.
Increased plasma HDL-cholesterol and apo A-1 in sedentary middle-aged men after physical conditioning.
Eur J Clin Invest.
1980;
10
203-209
-
69
Dolgin E.
Trial puts niacin-and cholesterol dogma-in the line of fire.
Nat Med.
2011;
17
756
-
70
Alsheikh-Ali A A, Lin J L, Abourjaily P et al.
Prevalence of low high-density lipoprotein cholesterol in patients with documented coronary heart disease or risk equivalent and controlled low-density lipoprotein cholesterol.
Am J Cardiol.
2007;
100
1499-1501
-
71
Shepherd J, Packard C J, Patsch J R et al.
Effects of nicotinic acid therapy on plasma high density lipoprotein subfraction distribution and composition and on apolipoprotein A metabolism.
J Clin Invest.
1979;
63
858-867
-
72
Wu Z H, Zhao S P.
Niacin promotes cholesterol efflux through stimulation of the PPARgamma-LXRalpha-ABCA1 pathway in 3T3-L1 adipocytes.
Pharmacology.
2009;
84
282-287
-
73
Tunaru S, Kero J, Schaub A et al.
PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect.
Nat Med.
2003;
9
352-355
-
74
Shepherd J, Betteridge J, Van Gaal L.
Nicotinic acid in the management of dyslipidaemia associated with diabetes and metabolic syndrome: a position paper developed by a European Consensus Panel.
Curr Med Res Opin.
2005;
21
665-682
-
75
Insull W, McGovern M E, Schrott H et al.
Efficacy of extended-release niacin with lovastatin for hypercholesterolemia: assessing all reasonable doses with innovative surface graph analysis.
Arch Intern Med.
2004;
164
1121-1127
-
76
Parhofer K G.
Review of extended-release niacin/laropiprant fixed combination in the treatment of mixed dyslipidemia and primary hypercholesterolemia.
Vasc Health Risk Manag.
2009;
5
901-908
-
77
Brown B G, Zhao X Q, Chait A et al.
Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease.
N Engl J Med.
2001;
345
1583-1592
-
78
Taylor A J, Lee H J, Sullenberger L E.
The effect of 24 months of combination statin and extended-release niacin on carotid intima-media thickness: ARBITER 3.
Curr Med Res Opin.
2006;
22
2243-2250
-
79
Clofibrate and niacin in coronary heart disease.
Jama.
1975;
231
360-381
-
80
Canner P L, Furberg C D, Terrin M L et al.
Benefits of niacin by glycemic status in patients with healed myocardial infarction (from the Coronary Drug Project).
Am J Cardiol.
2005;
95
254-257
-
81
Bruckert E, Labreuche J, Amarenco P.
Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis.
Atherosclerosis.
2010;
210
353-361
-
82
Wise J.
Trial of niacin alongside statin is stopped early.
BMJ.
2011;
342
D3400
-
83
Marx N, Duez H, Fruchart J C et al.
Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells.
Circ Res.
2004;
94
1168-1178
-
84
Lalloyer F, Staels B.
Fibrates, glitazones, and peroxisome proliferator-activated receptors.
Arterioscler Thromb Vasc Biol.
2010;
30
894-899
-
85
Manninen V, Tenkanen L, Koskinen P et al.
Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment.
Circulation.
1992;
85
37-45
-
86
Sacks F M, Carey V J, Fruchart J C.
Combination lipid therapy in type 2 diabetes.
N Engl J Med.
2010;
363
692-694
(author reply 694–695)
-
87
Athyros V G, Papageorgiou A A, Athyrou V V et al.
Atorvastatin and micronized fenofibrate alone and in combination in type 2 diabetes with combined hyperlipidemia.
Diabetes Care.
2002;
25
1198-1202
-
88
Derosa G, Cicero A E, Bertone G et al.
Comparison of fluvastatin + fenofibrate combination therapy and fluvastatin monotherapy in the treatment of combined hyperlipidemia, type 2 diabetes mellitus, and coronary heart disease: a 12-month, randomized, double-blind, controlled trial.
Clin Ther.
2004;
26
1599-1607
-
89
Koh K K, Quon M J, Han S H et al.
Additive beneficial effects of fenofibrate combined with atorvastatin in the treatment of combined hyperlipidemia.
J Am Coll Cardiol.
2005;
45
1649-1653
-
90
Grundy S M, Vega G L, Yuan Z et al.
Effectiveness and tolerability of simvastatin plus fenofibrate for combined hyperlipidemia (the SAFARI trial).
Am J Cardiol.
2005;
95
462-468
-
91
Ginsberg H N, Elam M B, Lovato L C et al.
Effects of combination lipid therapy in type 2 diabetes mellitus.
N Engl J Med.
;
362
1563-1574
-
92
Dormandy J A, Charbonnel B, Eckland D J et al.
Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial.
Lancet.
2005;
366
1279-1289
-
93
Nissen S E, Nicholls S J, Wolski K et al.
Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial.
Jama.
2008;
299
1561-1573
-
94
Lincoff A M, Wolski K, Nicholls S J et al.
Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials.
Jama.
2007;
298
1180-1188
-
95
Henry R R, Lincoff A M, Mudaliar S et al.
Effect of the dual peroxisome proliferator-activated receptor-alpha/gamma agonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY): a phase II, randomised, dose-ranging study.
Lancet.
2009;
374
126-135
-
96
deGoma E M, Leeper N J, Heidenreich P A.
Clinical significance of high-density lipoprotein cholesterol in patients with low low-density lipoprotein cholesterol.
J Am Coll Cardiol.
2008;
51
49-55
-
97
van der Steeg W A, Holme I, Boekholdt S M et al.
High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies.
J Am Coll Cardiol.
2008;
51
634-642
-
98
Asztalos B F, Horvath K V, McNamara J R et al.
Comparing the effects of five different statins on the HDL subpopulation profiles of coronary heart disease patients.
Atherosclerosis.
2002;
164
361-369
-
99
Asztalos B F, Collins D, Horvath K V et al.
Relation of gemfibrozil treatment and high-density lipoprotein subpopulation profile with cardiovascular events in the Veterans Affairs High-Density Lipoprotein Intervention Trial.
Metabolism.
2008;
57
77-83
-
100
Otvos J D, Collins D, Freedman D S et al.
Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial.
Circulation.
2006;
113
1556-1563
-
101
Vasan R S, Pencina M J, Robins S J et al.
Association of circulating cholesteryl ester transfer protein activity with incidence of cardiovascular disease in the community.
Circulation.
2009;
120
2414-2420
-
102
Chapman M J, Le Goff W, Guerin M et al.
Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors.
Eur Heart J.
2010;
31
149-164
-
103
Barter P J, Caulfield M, Eriksson M et al.
Effects of torcetrapib in patients at high risk for coronary events.
N Engl J Med.
2007;
357
2109-2122
-
104
Hu X, Dietz J D, Xia C et al.
Torcetrapib induces aldosterone and cortisol production by an intracellular calcium-mediated mechanism independently of cholesteryl ester transfer protein inhibition.
Endocrinology.
2009;
150
2211-2219
-
105
Forrest M J, Bloomfield D, Briscoe R J et al.
Torcetrapib-induced blood pressure elevation is independent of CETP inhibition and is accompanied by increased circulating levels of aldosterone.
Br J Pharmacol.
2008;
154
1465-1473
-
106
Cannon C P, Shah S, Dansky H M et al.
Safety of anacetrapib in patients with or at high risk for coronary heart disease.
N Engl J Med.
2010;
363
2406-2415
-
107
Yvan-Charvet L, Kling J, Pagler T et al.
Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib.
Arterioscler Thromb Vasc Biol.
2010;
30
1430-1438
-
108
Olsson A G, Schwartz G G, Szarek M et al.
High-density lipoprotein, but not low-density lipoprotein cholesterol levels influence short-term prognosis after acute coronary syndrome: results from the MIRACL trial.
Eur Heart J.
2005;
26
890-896
-
109
Tardif J C, Gregoire J, L"Allier P L et al.
Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial.
Jama.
2007;
297
1675-1682
-
110
Nicholls S J, Tuzcu E M, Sipahi I et al.
Relationship between atheroma regression and change in lumen size after infusion of apolipoprotein A-I Milano.
J Am Coll Cardiol.
2006;
47
992-997
-
111
Nissen S E, Tsunoda T, Tuzcu E M et al.
Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial.
Jama.
2003;
290
2292-2300
-
112
Patel S, Drew B G, Nakhla S et al.
Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes.
J Am Coll Cardiol.
2009;
53
962-971
-
113
Chenevard R, Hurlimann D, Spieker L et al.
RESEARCH:Reconstituted HDL in Acute Coronary Syndromes.
Cardiovasc Ther.
2010;
DOI: doi: 10.1111/j.1755-5922.2010.00221.X.
[Epub ahead of print]
-
114
Navab M, Anantharamaiah G M, Reddy S T et al.
Peptide Mimetics of Apolipoproteins Improve HDL Function.
J Clin Lipidol.
2007;
1
142-147
-
115
D'Souza W, Stonik J A, Murphy A et al.
Structure/function relationships of apolipoprotein a-I mimetic peptides: implications for antiatherogenic activities of high-density lipoprotein.
Circ Res.
2010;
107
217-227
-
116
Hillier T A, Fagot-Campagna A, Eschwège E et al.
Weight change and changes in the metabolic syndrome as the French population moves towards overweight: the D.E S.I.R. cohort.
Int J Epidemiol.
2006;
35
190-196
-
117
Mooradian A D, Haas M J, Wehmeier K R et al.
Obesity-related changes in high-density lipoprotein metabolism.
Obesity.
2008;
16
1152-1160
-
118
Sirpal S.
Myeloperoxidase-mediated lipoprotein carbamylation as a mechanistic pathway for atherosclerotic vascular disease.
Clin Sci.
2009;
116
681-695
-
119
Shao B, Oda M N, Oram J F et al.
Myeloperoxidase: an oxidative pathway for generating dysfunctional high-density lipoprotein.
Chem Res Toxicol.
2010;
23
447-454
-
120
Williams P T, Blanche P J, Krauss R M.
Behavioral versus genetic correlates of lipoproteins and adiposity in identical twins discordant for exercise.
Circulation.
2005;
112
350-356
-
121
Ahmad T, Chasman D I, Buring J E et al.
Physical activity modifies the effect of LPL, LIPC, and CETP polymorphisms on HDL-C levels and the risk of myocardial infarction in women of European ancestry.
Circ Cardiovasc Genet.
2011;
4
74-80
-
122
Mozaffarian D, Aro A, Willet W C.
Health effects of trans-fatty acids: experimental and observational evidence.
Eur J Clin Nutr.
2009;
63(2)
S5-S21
-
123
Rapp R J.
Hypertriglyceridemia: a review beyond low-density lepoprotein.
Cardiol Rev.
2002;
10
163-172
-
124
Oram J F, Heinecke J W.
ATP-binding cassette transporter A1: a ceII cholesterol exporter that protects against cardiovascular disease.
Physiol Rev.
2005;
85
1343-1372
-
125
Schaefer E J, Santos R D, Asztalos B F.
Marked HDL deficiency and premature coronary heart disease.
Curr Opin Lipidol.
2010;
21
289-297
-
126
Hovingh G K, Brownlie A, Bisoendial R J et al.
A novel apoA-I mutation (L178P) leads to endothelial dysfunction, increased arterial wall thickness, and primature coronary artery disease.
J AM Coll Cardiol.
2004;
44
1429-1435
-
127
Miller M, Zhan M.
Genetic determinants of low high-density lipoprotein cholesterol.
Curr Opin Cardiol.
2004;
19
380-384
-
128
Pocovi M, Cenarro A, Civeira F et al.
Beta-glucocerebrosidase gene locus as a link for Gaucher’s disease and familial hypo-alpha-lipoproteinaemia.
Lancet.
1998;
351
1919-1923
Univ.-Prof. Dr. med. Bodo Levkau
Institut für Pathophysiologie
Zentrum für Innere Medizin
Universitätsklinikum Essen
Hufelandstraße 55
45122 Essen
Telefon: 0201/723–4414
eMail: levkau@uni-essen.de