Subscribe to RSS
DOI: 10.1055/s-0030-1257870
Synthesis of β-Amino-Functionalized α-exo-Methylene-γ-butyrolactones via a β-Lactam Synthon Strategy
Publication History
Publication Date:
22 July 2010 (online)
Abstract
A convenient and effective synthetic approach was developed to access a structurally novel class of β-amino-functionalized α-exo-methylene-γ-butyrolactones using chiral β-lactam synthons.
Key words
α-methylene carbonyl compounds - Michael acceptor - β-lactam synthon - α-exo-methylene-β-lactam - β-amino-α-exo-methylene-γ-butyrolactone
-
1a
Santos MMM.Moreira R. Mini Rev. Med. Chem. 2007, 7: 1040 -
1b
Xavier NM.Rauter AP. Carbohydr. Res. 2008, 343: 1523 -
1c
Amslinger S. ChemMedChem 2010, 5: 351 -
1d
Schwartz RE.Helms GL.Bolessa EA.Wilson KE.Giacobbe RA.Tkacz JS.Bills GF.Liesch JM.Zink DL.Curotto JE.Pramanik B.Onishi JC. Tetrahedron 1994, 50: 1675 -
1e
Wu Y.-J.He H.Sun L.-Q.L’Heureux A.Chen J.Dextraze P.Starrett JE.Boissard CG.Gribkoff VK.Natale J.Dworetzky SI. J. Med. Chem. 2004, 47: 2887 -
1f
Elford TG.Hall DG. Tetrahedron Lett. 2008, 49: 6995 -
1g
Bertoli A.Fanfoni L.Felluga F.Pitacco G.Valentin E. Tetrahedron: Asymmetry 2009, 20: 2305 -
2a
Lepoitteniv J.-P.Berl V.Gimenez-Arnau E. Chem. Rec. 2009, 9: 258 -
2b
Hoffmann HMR.Rabe J. Angew. Chem., Int. Ed. Engl. 1985, 24: 94 -
2c
Heilmann J.Wasescha MR.Schmidt TJ. Bioorg. Med. Chem. 2001, 9: 2189 -
2d
Chen Y.-L.Lu C.-M.Lee S.-J.Kuo D.-H.Chen I.Wang T.-C.Tzeng C.-C. Bioorg. Med. Chem. 2005, 13: 5710 -
2e
Lindenmeyer MT.Hrenn A.Kern C.Castro V.Murillo R.Muller S.Laufer S.Schulte-Monting J.Siedle B.Merfort I. Bioorg. Med. Chem. 2006, 14: 2487 -
2f
Albrecht A.Koszuk JF.Modranka J.RóŸalski M.Krajewska U.Janecka A.Studzian K.Janecki T. Bioorg. Med. Chem. 2008, 16: 4872 -
2g
Albrecht A.Albrecht .RóŸalski M.Krajewska U.Janecka A.Studzian K.Janecki T. New J. Chem. 2010, 34: 750 -
3a
Chataigner I.Zammattio F.Lebreton J.Villiéras J. Tetrahedron 2008, 64: 2441 -
3b
Saha S.Roy SC. Tetrahedron 2010, 66: 4278 -
3c
Tamura S.Tonokawa M.Murakami N. Tetrahedron Lett. 2010, 51: 3134 -
4a
Palomo C.Cossio FP.Cuevas C.Odriozola JM.Ontoria JM. Tetrahedron Lett. 1992, 33: 4827 -
4b
Ojima I.Habus I.Zhao M.Zucco M.Park YH.Sun CM.Brigaud T. Tetrahedron 1992, 48: 6985 -
4c
Banik BK.Manhas MS.Bose AK. J. Org. Chem. 1993, 58: 307 -
4d
Alcaide B.Martin-Cantalejo Y.Rodriguez-López J.Sierra MA. J. Org. Chem. 1993, 58: 4767 -
4e
Ojima I. Acc. Chem. Res. 1995, 28: 383 -
4f
Coantic S.Mouysset D.Mignani S.Tabart M.Stella L. Tetrahedron 2007, 63: 3205 -
4g
Ma S.Yoon DH.Ha H.-J.Lee WK. Tetrahedron Lett. 2007, 48: 269 -
4h
Kazi B.Kiss L.Forró E.Fülöp F. Tetrahedron Lett. 2010, 51: 82 -
5a
Buchholz R.Hoffmann HMR. Helv. Chim. Acta 1991, 74: 1213 -
5b
Tiwari DK.Shaikh AY.Pavase LS.Gumaste VK.Deshmukh ARAS. Tetrahedron 2007, 63: 2524 -
6a
Tanaka K.Yoda H.Inoue K.Kaji A. Synthesis 1986, 66 -
6b
Tanaka K.Horiuchi H.Yoda H. J. Org. Chem. 1989, 54: 63 - 8 For the synthesis of α-methylene-β-lactams
via cyclization of β-amino esters, see:
Chen H.-Y.Patkar LN.Ueng S.-H.Lin C.-C.Lee AS.-Y. Synlett 2005, 2035 -
9a
Anand A.Bhargava G.Hundal MS.Mahajan MP. Heterocycles 2007, 73: 689 -
9b
Dejaegher Y.D’hooghe M.De Kimpe N. Synlett 2008, 1961 -
9c
Alcaide B.Almendros P.Carrascosa R.Redondo MC. Chem. Eur. J. 2008, 14: 637 -
11a
De Vitis L.Troisi L.Granito C.Pindinelli E.Ronzini L. Eur. J. Org. Chem. 2007, 356 -
11b
Shirode NM.Likhite AP.Gumaste VK.Deshmukh ARAS. Tetrahedron 2008, 64: 7191 - For other synthetic examples, see:
-
15a
Dixon DJ.Ley SV.Reynolds DJ. Chem. Eur. J. 2002, 8: 1621 -
15b
Miyata O.Namba M.Ueda M.Naito T. Org. Biomol. Chem. 2004, 2: 1274 -
15c
Enomoto M.Kuwahara S. Angew. Chem. Int. Ed. 2009, 48: 1144
References
The stereochemical assignments of trans- and cis-4 were secured by the coupling constants between the two vicinal protons of the oxyranyl groups in their ¹H NMR spectra (J trans = 2.4 Hz and J cis = 4.2 Hz), in agreement with those reported for authentic materials, see: ref. 6b.
10The compound 6 was obtained as a single diastereomer whose stereochemistry was not determined. ¹H NMR data for 6: δ = 3.80 (q, J = 5.1 Hz, 1 H, CH), 3.68-3.56 (m, 4 H, CH, CH), 3.45 (dt, J = 7.8, 13.8 Hz, 1 H, CH2), 3.35 (s, 3 H, OCH3), 3.00-2.92 (m, 2 H, CH2), 1.59-1.27 (m, 18 H, CH2), 0.92-0.86 (m, 6 H, CH3), 0.90 (s, 9 H, t-C4H9), 0.08 (s, 3 H, CH3), 0.07 (s, 3 H, CH3).
12The compound 7 was obtained as a 1:1 mixture of inseparable diastereomers. ¹H NMR data for 7: δ = 3.93 (m, 1 H, CH), 3.70 (m, 1 H, CH), 3.68-3.56 (m, 3 H, CH2, CH, and CH2), 3.45 (dt, J = 7.8, 13.8 Hz, 1 H, CH2), 3.33 (s, 3 H, OCH3), 2.79 (m, 1 H, CH 2NH), 1.57-1.28 (m, 18 H, CH2), 0.90-0.86 (m, 6 H, CH3), 0.88, 0.87 (s, 9 H, t-C4H9), 0.08, 0.06 (s, 3 H, CH3), 0.04, 0.00 (s, 3 H, CH3).
13It should be noted that our initial attempts to generate the target compounds via cyclization of γ-hydroxy esters under basic and/or mild acidic conditions failed due to low stability of the products.
14The formation of cis-8e and cis-8f may be interpreted in terms of intramolecular nucleophilic attack of alkoxides, generated in situ from removal of the TBS groups, which would act as the primary reactive species.