Synthesis 2010(23): 3993-3998  
DOI: 10.1055/s-0030-1258267
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Thiosalicylic Acid Catalyzed Multicomponent Reactions: Microwave-Assisted Synthesis of New Extended Angular Fused Azaheterocycles

Ge Zhang, Ning Ma, Bo Jiang, Feng Shi, Shu-Jiang Tu*
School of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou, 221116, Jiangsu, P. R. of China
Fax: +86(516)83500065; e-Mail: laotu@xznu.edu.cn;
Further Information

Publication History

Received 4 June 2010
Publication Date:
24 September 2010 (online)

Abstract

A new, efficient and convenient approach to the synthesis of new extended angular fused aza-heterocycles including dibenzacridine and naphth[2,3-a:2′,3′-j]acridine units with good luminescent properties is described. The multicomponent reactions (MCRs) were conducted by reacting readily available and inexpensive starting materials using thiosalicylic acid as a catalyst under microwave irradiation. A total of 14 examples were examined, and a broad substrate scope and high overall yields (72-89%) were revealed.

    References

  • 1 Marder S, Kaafarani B, Barlow S, Kippelen B, Domercq B, Zhang Q, and Kondo T. inventors; PCT Int. Appl. WO  2005123737. 
  • 2a Grimsdale AC. Müllen K. Angew. Chem. Int. Ed.  2005,  44:  5592 
  • 2b Hoeben FJM. Jonkheijm P. Meijer EW. Schenning A. Chem. Rev.  2005,  105:  1491 
  • 2c Wu JS. Pisula W. Müllen K. Chem. Rev.  2007,  107:  718 
  • 3a Rudler H. Parlier A. Hamon L. Herson P. Daran J.-C. Chem. Commun.  2008,  4150 
  • 3b Wan J.-P. Gan S.-F. Sun G.-L. Pan Y.-J. J. Org. Chem.  2009,  74:  2862 
  • 4a Ellis MJ. Stevens MFG. J. Chem. Soc., Perkin Trans. 1  2001,  3180 
  • 4b Hagan DJ. Chan D. Schwalbe CH. Stevens MFG. J. Chem. Soc., Perkin Trans. 1  1998,  915 
  • 5a Llama EF. De Campo C. Capo M. Anadon M. Eur. J. Med. Chem.  1989,  391 
  • 5b Carde RN. Jones G. McKinley WH. Price C. J. Chem. Soc., Perkin Trans. 1  1978,  1211 
  • 5c Carde RN. Hayes PC. Jones G. Cliff CJ. J. Chem. Soc., Perkin Trans. 1  1981,  1132 
  • 6a Khurana JM. Maikap GC. Mehta S. Synthesis  1990,  731 
  • 6b Matsumoto H. Arai T. Takahashi M. Ashizawa T. Nakano T. Nagai Y. Bull. Chem. Soc. Jpn.  1983,  56:  3009 
  • 6c Nakano T. Takahashi M. Arai T. Seki S. Matsumoto H. Nagai Y. Chem. Lett.  1982,  613 
  • 7 Dilthey W. Quint F. Heinen J. J. Prakt. Chem.  1939,  152:  49 
  • 8 Dutta B. Kar GK. Ray JK. Tetrahedron Lett.  2003,  44:  8641 
  • For reviews on organocatalysts, see:
  • 9a Dalko PI. Moisan L. Angew. Chem. Int. Ed.  2001,  40:  3726 
  • 9b Dalko PI. Moisan L. Angew. Chem. Int. Ed.  2004,  43:  5138 
  • 9c Special issue on Asymmetric Organocatalysis: Acc. Chem. Res.  2004,  37:  487 
  • 9d Takemoto Y. Org. Biomol. Chem.  2005,  3:  4299 
  • 9e Seayad J. List B. Org. Biomol. Chem.  2005,  3:  719 
  • 10a Rajitha B. Sunil KB. Thirupathi RY. Narsimha RP. Sreenivasulu N. Tetrahedron Lett.  2005,  46:  8691 
  • 10b Jia CS. Zhang Z. Tu SJ. Wang GW. Org. Biomol. Chem.  2006,  4:  104 
  • 10c Khosropour AR. Khodaei MM. Moghhannian H. Synlett  2005,  955 
  • 10d Shaterian HR. Ghashang M. Hassankhani A. Dyes Pigm.  2008,  76:  564 
  • 10e Tu SJ. Jiang B. Zhang JY. Jia RH. Zhang Y. Yao CS. Org. Biomol. Chem.  2006,  4:  3980 
  • 11a Jiang B. Tu S.-J. Kaur P. Wever W. Li G. J. Am. Chem. Soc.  2009,  131:  11660 
  • 11b Jiang B. Li C. Shi F. Tu S.-J. Kaur P. Wever W. Li G. J. Org. Chem.  2010,  75:  2962 
  • 11c Jiang B. Wang X. Shi F. Tu S.-J. Ai T. Ballew A. Li G. J. Org. Chem.  2009,  74:  9486 
  • 11d Jiang B. Shi F. Tu S.-J. Curr. Org. Chem.  2010,  14:  357 
  • 12a Tu SJ. Jiang B. Jia RH. Zhang JY. Zhang Y. Yao CS. Shi F. Org. Biomol. Chem.  2006,  4:  3664 
  • 12b Tu S.-J. Cao X.-D. Hao W.-J. Zhang X.-H. Yan S. Wu S.-S. Han Z.-G. Shi F. Org. Biomol. Chem.  2009,  7:  557 
  • 12c Jiang B. Hao W.-J. Zhang J.-P. Tu S.-J. Shi F. Org. Biomol. Chem.  2009,  7:  1171 
  • 12d Jiang B. Hao W.-J. Zhang J.-P. Tu S.-J. Shi F. Org. Biomol. Chem.  2009,  7:  2195 
  • 12e Jiang B. Cao L.-J. Tu S.-J. Zheng W.-R. Yu H.-Z. J. Comb. Chem.  2009,  11:  612 
  • 13a Li G. Kim SH. Wei H.-X. Tetrahedron Lett.  2000,  41:  8699 
  • 13b Wei H.-X. Siruta S. Li G. Tetrahedron Lett.  2002,  43:  3809 
  • 13c Chen D. Timmons C. Chao S. Li G. Eur. J. Org. Chem.  2004,  3097 
  • 13d Li G. Wei H.-X. Kim SH. Carducci MD. Angew. Chem. Int. Ed.  2001,  40:  4277 
  • 14a Cleator E. Baxter C. O’Hagan M. O’Riordan T. Sheen F. Stewart G. Tetrahedron Lett.  2010,  51:  1079 
  • 14b Enders D. Wang C. Mukanova M. Greb A. Chem. Commun.  2010,  46:  2447 
  • 14c Adib M. Ansari S. Fatemi S. Bijanzadeh H. Zhu L. Tetrahedron  2010,  64:  2723 
  • 14d Kumar A. Sharma S. Maurya R. Tetrahedron Lett.  2009,  50:  5937 
15

Single-crystal growth was carried out in N,N-dimethyl­-formamide at room temperature. X-ray crystallographic analysis was performed with a Siemens SMART CCD and a Semens P4 diffractometer. Crystal data for 4h (CCDC 793729): C28H19NO2; crystal dimensions 0.18 × 0.12 × 0.10 mm; monoclinic; space group P2 (1)/n; a = 9.4920 (11) Å, b = 11.2767 (16) Å, c = 18.883 (2) Å, α = 90˚, β = 102.650 (2)˚, γ = 90˚; V = 1972.1 (4) ų; Mr = 401.44; Z = 4; Dc = 1.352 g/cm³; λ = 0.71073 Å; µ (MoKα) = 0.085 mm; F(000) = 840, R 1 = 0.1032, wR 2 = 0.0544.