Synthesis 2010(22): 3785-3801  
DOI: 10.1055/s-0030-1258296
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart ˙ New York

Highly Practical BINOL-Derived Acid-Base Combined Salt Catalysts for the Asymmetric Direct Mannich-Type Reaction

Manabu Hatanoa, Kazuaki Ishihara*a,b
a Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
b Japan Science and Technology Agency (JST), CREST, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
Fax: +81(52)7893222; e-Mail: ishihara@cc.nagoya-u.ac.jp;
Further Information

Publication History

Received 17 September 2010
Publication Date:
14 October 2010 (online)

Abstract

The catalytic asymmetric direct Mannich-type reaction between aldimines and 1,3-dicarbonyl compounds is one of the most important carbon-carbon bond-forming reactions in organic chemistry. The resulting Mannich adducts can be efficiently transformed into pharmaceutically useful, optically active β-amino ketones, β-amino esters, β-lactams, etc. In the course of our study of chiral acid-base combined salt catalysts for asymmetric reactions, we developed a series of simple, practical, chiral BINOL-derived salt catalysts, such as chiral pyridinium 1,1′-binaphthyl-2,2′-disulfonates 1, chiral lithium(I) binaphtholate 2, chiral magnesium(II) binaphtholate (3), chiral calcium(II) phosphate 4, and chiral phosphoric acid 5, which were particularly effective for direct Mannich-type reactions.

1 Introduction

2 1,1′-Binaphthyl-2,2′-disulfonic Acid (BINSA)-Pyridinium Salts

3 Lithium(I) Binaphtholate Salts

4 Magnesium(II) Binaphtholate Salts

5 Calcium(II) Phosphate Salts and Chiral Phosphoric Acids

6 Conclusions

    References

  • For reviews in direct Mannich-type reactions
  • 1a Córdova A. Acc. Chem. Res.  2004,  37:  102 
  • 1b Friestad GK. Mathies AK. Tetrahedron  2007,  63:  2541 
  • 1c Ting A. Schaus SE. Eur. J. Org. Chem.  2007,  5797 
  • 1d Verkade JMM. van Hemert LJC. Quaedflieg PJLM. Rutjes FPJT. Chem. Soc. Rev.  2008,  37:  29 
  • 2a Marigo M. Kjærsgaard A. Juhl K. Gathergood N. Jørgensen KA. Chem. Eur. J.  2003,  9:  2359 
  • 2b Hamashima Y. Sasamoto N. Hotta D. Somei H. Umebayashi N. Sodeoka M. Angew. Chem. Int. Ed.  2005,  44:  1525 
  • 2c Sasamoto N. Dubs C. Hamashima Y. Sodeoka M. J. Am. Chem. Soc.  2006,  128:  14010 
  • 2d Chen Z. Morimoto H. Matsunaga S. Shibasaki M.
    J. Am. Chem. Soc.  2008,  130:  2170 
  • 2e Poisson T. Tsubogo T. Yamashita Y. Kobayashi S. J. Org. Chem.  2010,  75:  963 
  • 3a Uraguchi D. Terada M. J. Am. Chem. Soc.  2004,  126:  5356 
  • 3b Lou S. Taoka BM. Ting A. Schaus SE.
    J. Am. Chem. Soc.  2005,  127:  11256 
  • 3c Tillman AL. Ye J. Dixon DJ. Chem. Commun.  2006,  1191 
  • 3d Song J. Wang Y. Deng L. J. Am. Chem. Soc.  2006,  128:  6048 
  • 3e Fini F. Bernardi L. Herrera RP. Pettersen D. Ricci A. Sgarzani V. Adv. Synth. Catal.  2006,  348:  2043 
  • 3f Song J. Shih H.-W. Deng L. Org. Lett.  2007,  9:  603 
  • 3g Yamaoka Y. Miyabe H. Yasui Y. Takemoto Y. Synthesis  2007,  2571 
  • 3h Takada K. Tanaka S. Nagasawa K. Synlett  2009,  1643 
  • 3i Han X. Kwiatkowski J. Xue F. Huang K.-W. Lu Y. Angew. Chem. Int. Ed.  2009,  48:  7604 
  • 3j Pan Y. Zhao Y. Ma T. Yang Y. Liu H. Jiang Z. Tan C.-H. Chem. Eur. J.  2010,  16:  779 
  • 3k Lee JH. Kim DY. Synthesis  2010,  1860 
  • For reviews in BINOL chemistry, see:
  • 4a Chen Y. Yekta S. Yudin AK. Chem. Rev.  2003,  103:  3155 
  • 4b Shibasaki M. Matsunaga S. Chem. Soc. Rev.  2006,  35:  269 
  • 4c Brunel JM. Chem. Rev.  2007,  107:  PR1 
  • For reviews in acid-base chemistry, see:
  • 5a Kanai M. Kato N. Ichikawa E. Shibasaki M. Synlett  2005,  1491 
  • 5b Ishihara K. Sakakura A. Hatano M. Synlett  2007,  686 
  • The pK a value for 1,3-dicarbonyl compounds, see:
  • 6a Olmstead WN. Bordwell FG. J. Org. Chem.  1980,  45:  3299 
  • 6b Mori K. Oshiba M. Hara T. Mizugaki T. Ebitani K. Kaneda K. Tetrahedron Lett.  2005,  46:  4283 
  • 7 Hatano M. Maki T. Moriyama K. Arinobe M. Ishihara K. J. Am. Chem. Soc.  2008,  130:  16858 
  • Achiral diarylammonium arenesulfonates for ester condensation reactions, see:
  • 8a Wakasugi K. Misaki T. Yamada K. Tanabe Y. Tetrahedron Lett.  2000,  41:  5249 
  • 8b Ishihara K. Nakagawa S. Sakakura A. J. Am. Chem. Soc.  2005,  127:  4168 
  • 8c Sakakura A. Nakagawa S. Ishihara K. Tetrahedron  2006,  62:  422 
  • 8d Sakakura A. Watanabe H. Nakagawa S. Ishihara K. Chem. Asian J.  2007,  2:  477 
  • Asymmetric catalysis by ammonium sulfonates, see: aza-Henry reactions:
  • 9a Nugent BM. Yoder RA. Johnston JN. J. Am. Chem. Soc.  2004,  126:  3418 
  • Diels-Alder reactions:
  • 9b Ishihara K. Nakano K. J. Am. Chem. Soc.  2005,  127:  10504 
  • 9c Sakakura A. Suzuki K. Nakano K. Ishihara K. Org. Lett.  2006,  8:  2229 
  • 9d Kano T. Tanaka Y. Maruoka K. Org. Lett.  2006,  8:  2687 
  • [2+2] Cycloadditions:
  • 9e Ishihara K. Nakano K. J. Am. Chem. Soc.  2007,  129:  8930 
  • 10 Barber HJ. Smiles S. J. Chem. Soc.  1928,  1141 
  • List and co-workers reported asymmetric catalysis with BINSA, where the enantioselectivities were 0-5% ee:
  • 11a Kampen D. Ladépêche A. Claßen G. List B. Adv. Synth. Catal.  2008,  350:  962 
  • 11b Pan SC. List B. Chem. Asian J.  2008,  3:  430 
  • In the original literature, the Newman-Kwart rearrangement was examined at 285-400 ˚C, see:
  • 12a Fabbri D. Delogu G. De Lucchi O. J. Org. Chem.  1993,  58:  1748 
  • 12b Bandarage UK. Simpson J. Smith RAJ. Weavers RT. Tetrahedron  1994,  50:  3463 
  • A 1-400-kg-scale synthesis of aryl S-thiocarbamates from aryl O-thiocarbamates in microwave reactors was reported by Moseley and co-workers. The industrial synthesis of 6 should be a great advantage, see:
  • 13a Moseley JD. Lenden P. Lockwood M. Ruda K. Sherlock J.-P. Thomson AD. Gilday JP. Org. Process Res. Dev.  2008,  12:  30 
  • 13b Gilday JP. Lenden P. Moseley JD. Cox BG. J. Org. Chem.  2008,  73:  3130 
  • 14a Terada M. Sorimachi K. Uraguchi D. Synlett  2006,  133 
  • 14b Gridnev ID. Kouchi M. Sorimachi K. Terada M. Tetrahedron Lett.  2007,  48:  497 
  • 15a García-García P. Lay F. García-García P. Rabalakos C. List B. Angew. Chem. Int. Ed.  2009,  48:  4363 
  • 15b Treskow M. Neudörfl J. Giernoth R. Eur. J. Org. Chem.  2009,  3693 
  • 15c Hatano M. Hattori Y. Furuya Y. Ishihara K. Org. Lett.  2009,  11:  2321 
  • 15d LaLonde RL. Wang ZJ. Mba M. Lackner AD. Toste FD. Angew. Chem. Int. Ed.  2010,  49:  598 
  • 15e Hatano M. Sugiura Y. Ishihara K. Tetrahedron: Asymmetry  2010,  21:  1311 
  • 15f He H. Chen L.-Y. Wong W.-Y. Chan W.-H. Lee AWM. Eur. J. Org. Chem.  2010,  4181 
  • 15g Barbero M. Bazzi S. Cadamuro S. Dughera S. Magistris C. Venturello P. Synlett  2010,  1803 
  • 15h Ban S. Du D.-M. Liu H. Yang W. Eur. J. Org. Chem.  2010,  5460 
  • 15i Berkessel A. Christ P. Leconte N. Neudörfl JM. Schäfer M. Eur. J. Org. Chem.  2010,  5165 
  • 16 Hatano M. Horibe T. Ishihara K. J. Am. Chem. Soc.  2010,  132:  56 
  • Chiral Li(I)-BINOLate catalyses, see:
  • 17a Schiffers R. Kagan HB. Synlett  1997,  1175 
  • 17b Loog O. Mäeorg U. Tetrahedron: Asymmetry  1999,  10:  2411 
  • 17c Nakajima M. Orito Y. Ishizuka T. Hashimoto S. Org. Lett.  2004,  6:  3763 
  • 17d Ichibakase T. Orito Y. Nakajima M. Tetrahedron Lett.  2008,  49:  4427 
  • 17e Tanaka K. Ueda T. Ichibakase T. Nakajima M. Tetrahedron Lett.  2010,  51:  2168 
  • 17f Ueda T. Tanaka K. Ichibakase T. Orito Y. Nakajima M. Tetrahedron  2010,  66:  7726 
  • 18 Holmes IP. Kagan HB. Tetrahedron Lett.  2000,  41:  7453 
  • 19 Hatano M. Ikeno T. Miyamoto T. Ishihara K. J. Am. Chem. Soc.  2005,  127:  10776 
  • 21 Hatano M. Horibe T. Ishihara K. Org. Lett.  2010,  12:  3502 
  • Mg(II)-BINOLates have received little attention in asymmetric catalysis, see:
  • 22a Noyori R. Suga S. Kawai K. Okada S. Kitamura M. Pure Appl. Chem.  1988,  60:  1597 
  • 22b Charette AB. Gagnon A. Tetrahedron: Asymmetry  1999,  10:  1961 
  • 22c Bolm C. Beckmann O. Cosp A. Palazzi C. Synlett  2001,  1461 
  • 22d Weinert CS. Fanwick PE. Rothwell IP. Organometallics  2002,  21:  484 
  • 22e Du H. Zhang X. Wang Z. Bao H. You T. Ding K. Eur. J. Org. Chem.  2008,  2248 
  • For reviews in β-lactam synthesis, see:
  • 23a Mukerjee AK. Srivastava RC. Synthesis  1973,  327 
  • 23b Magriotis PA. Angew. Chem. Int. Ed.  2001,  40:  4377 
  • 23c Palomo C. Aizpurua JM. Ganboa I. Oiarbide M. Curr. Med. Chem.  2004,  11:  1837 
  • 23d Aranda MT. Perez-Faginas P. Gonzalez-Muniz R. Curr. Org. Chem.  2009,  6:  325 
  • 24 Hatano M. Moriyama K. Maki T. Ishihara K. Angew. Chem. Int. Ed.  2010,  49:  3823 
  • 25 Akiyama T. Itoh J. Yokota K. Fuchibe K. Angew. Chem. Int. Ed.  2004,  43:  1566 
  • For reviews on chiral phosphoric acid, see:
  • 26a Akiyama T. Chem. Rev.  2007,  107:  5744 
  • 26b Yu X. Wang W. Chem. Asian J.  2008,  3:  516 
  • 26c Terada M. Chem. Commun.  2008,  4097 
  • 26d Terada M. Synthesis  2010,  1929 
  • 27 Xu S. Wang Z. Zhang X. Zhang X. Ding K. Angew. Chem. Int. Ed.  2008,  47:  2840 
  • 28 Rueping M. Theissmann T. Kuenkel A. Koenigs RM. Angew. Chem. Int. Ed.  2008,  47:  6798 
  • Selected pioneering reports of asymmetric catalyses using phosphoric acid-metal salts, see:
  • 29a Alper H. Hamel N.
    J. Am. Chem. Soc.  1990,  112:  2803 
  • 29b Inanaga J. Sugimoto Y. Hanamoto T. New J. Chem.  1995,  19:  707 
  • 29c Hanamoto T. Furuno H. Sugimoto Y. Inanaga J. Synlett  1997,  79 
  • 29d Furuno H. Hayano T. Kambara T. Sugimoto Y. Hanamoto T. Tanaka Y. Jin YZ. Kagawa T. Inanaga J. Tetrahedron  2003,  59:  10509 
  • 29e Hamilton GL. Kang EJ. Mba M. Toste FD. Science  2007,  317:  496 
  • 30 For a review, and the references therein: Rueping M. Koenigs RM. Atodiresei I. Chem. Eur. J.  2010,  16:  9350 
  • 31 Hatano M. Ikeno T. Matsumura T. Torii S. Ishihara K. Adv. Synth. Catal.  2008,  350:  1776 
  • 32 After our publication of ref. 24, List and co-workers reported their investigation of the metal impurities in ‘phosphoric acid’. A trace-element analysis by ICP-OES revealed that various alkali and alkaline earth metals were present as major impurities in the order Ca > Na > Mg > Si >> other metals. They warned that these impurities could impair the catalytic activities of the expected ‘phosphoric acid’, such as in asymmetric hydrogenation. Klussmann M. Ratjen L. Hoffmann S. Wakchaure V. Goddard R. List B. Synlett  2010,  2189 
  • 33 Diastereoselective direct Mannich-type reaction of monothioesters, see: Utsumi N. Kitagaki S. Barbas CF. Org. Lett.  2008,  10:  3405 
  • 34 Yang JW. Stadler M. List B. Angew. Chem. Int. Ed.  2007,  46:  609 
  • 35 We found that CuI (1.7 equiv) was essential to promote the reaction. The decarboxylation of allyl β-ketocarboxylates with Pd(II)/HCO2H has been reported. Shimizu I. Tsuji J. J. Am. Chem. Soc.  1982,  104:  5844 
  • 36 Ye W. Jiang Z. Zhao Y. Li S. Goh M. Leow D. Soh Y.-T. Tan C.-H. Adv. Synth. Catal.  2007,  349:  2454 
  • Recent chiral Ca(II) salt catalyses, see:
  • 37a Suzuki T. Yamagiwa N. Matsuo Y. Sakamoto S. Yamaguchi K. Shibasaki M. Noyori R. Tetrahedron Lett.  2001,  42:  4669 
  • 37b Kumaraswamy G. Sastry MNV. Jena N. Tetrahedron Lett.  2001,  42:  8515 
  • 37c Saito S. Tsubogo T. Kobayashi S. J. Am. Chem. Soc.  2007,  129:  5364 
  • 37d Tsubogo T. Saito S. Seki K. Yamashita Y. Kobayashi S. J. Am. Chem. Soc.  2008,  130:  13321 
20

pK a values, which were reported in SciFinder, were calculated using Advanced Chemistry Development (ACD/Labs) software V11.02 (1994-2010 ACD/Labs).