Abstract
Michael-type addition of enamino esters to 3,4,6-tri-O -benzyl-2-nitro-d -glucal
under solvent-free conditions formed C -glycosides
in excellent yields with high stereoselectivity. Reduction of the
nitro group afforded the corresponding bicyclic 2-amino C -glycosides.
Key words
solvent-free -
C -glycosides - Michael-type addition
References and Notes
For examples, see:
<A NAME="RW05910ST-1A">1a </A>
Kim J.-H.
Huang F.
Ly M.
Linhardt RJ.
J. Org. Chem.
2008,
73:
9497
<A NAME="RW05910ST-1B">1b </A>
Yuan X.
Linhardt RJ.
Curr. Top. Med.
Chem.
2005,
5:
1393
<A NAME="RW05910ST-1C">1c </A>
Hultin PG.
Curr. Top. Med. Chem.
2005,
5:
1299
<A NAME="RW05910ST-1D">1d </A>
Costantino V.
Fattorusso E.
Imperatore C.
Mangoni A.
J. Org. Chem.
2004,
69:
1174
<A NAME="RW05910ST-1E">1e </A>
Yang J.
Franck RW.
Bittman R.
Samadder P.
Arthur G.
Org.
Lett.
2001,
3:
197
<A NAME="RW05910ST-1F">1f </A>
Shuto S.
Yahiro Y.
Ichikawa S.
Matsuda A.
J. Org. Chem.
2000,
65:
5547
For reviews in C -glycoside
synthesis, see:
<A NAME="RW05910ST-2A">2a </A>
Levy DE.
Fügedi P.
Strategies Towards C -Glycosides , In The Organic Chemistry of Sugars
Levy DE.
Fügedi P.
CRC Press;
Boca Raton:
2006.
p.269-348
<A NAME="RW05910ST-2B">2b </A>
Meo P.
Osborn
HMI.
Best Synthetic Methods: Carbohydrates
Elsevier Science
Ltd.;
New York:
2003.
p.337-384
<A NAME="RW05910ST-2C">2c </A>
Somsák L.
Chem. Rev.
2001,
101:
81
<A NAME="RW05910ST-2D">2d </A>
Du Y.
Linhardt RJ.
Tetrahedron
1998,
54:
9913 ; and references cited therein
<A NAME="RW05910ST-2E">2e </A>
Postema MHD.
C-Glycoside
Synthesis
CRC Press;
Boca Raton:
1995.
p.193-226
For recent methods of C -glycoside synthesis, see:
<A NAME="RW05910ST-3A">3a </A>
Dondoni A.
Massi A.
Acc. Chem. Res.
2006,
39:
451
<A NAME="RW05910ST-3B">3b </A>
Chambers DJ.
Evans GR.
Fairbanks AJ.
Tetrahedron: Asymmetry
2005,
16:
45
<A NAME="RW05910ST-3C">3c </A>
Schmidt RR.
Vankar YD.
Acc.
Chem. Res.
2008,
41:
1059
<A NAME="RW05910ST-3D">3d </A>
Lubin-Germain N.
Baltaze J.-P.
Coste A.
Hallonet A.
Lauréano H.
Legrave G.
Uziel J.
Augé J.
Org. Lett.
2008,
10:
725
<A NAME="RW05910ST-3E">3e </A>
Lin L.
He X.-P.
Xu R.
Chen G.-R.
Xie J.
Carbohydr.
Res.
2008,
343:
773
<A NAME="RW05910ST-3F">3f </A>
Gong H.
Gagné MR.
J. Am. Chem.
Soc.
2008,
130:
12177
<A NAME="RW05910ST-3G">3g </A>
Adriano S.
Vieira AS.
Fiorante PF.
Hough
TLS.
Ferreira FP.
Lüdtke DS.
Stefani HA.
Org. Lett.
2008,
10:
5215
<A NAME="RW05910ST-3H">3h </A>
Ichikawa S.
Hayashi R.
Hirano S.
Matsuda A.
Org. Lett.
2008,
10:
5107
<A NAME="RW05910ST-3I">3i </A>
Crich D.
Sharma I.
Org. Lett.
2008,
10:
4731
<A NAME="RW05910ST-3J">3j </A>
Mukherjee D.
Taneja SC.
Tetrahedron Lett.
2007,
48:
663
<A NAME="RW05910ST-3K">3k </A>
Yadav
JS.
Satyanarayana M.
Balanarsaiah E.
Raghavendra S.
Tetrahedron
Lett.
2006,
47:
6095
<A NAME="RW05910ST-3L">3l </A>
Yadav JS.
Reddy BVS.
Chary DN.
Madavi C.
Kunwar AC.
Tetrahedron Lett.
2009,
50:
81
<A NAME="RW05910ST-4A">4a </A>
Michael K.
Wittmann V.
Konig W.
Sandow J.
Kessler H.
Int. J. Pept. Protein Res.
1996,
48:
59
<A NAME="RW05910ST-4B">4b </A>
Allevi P.
Anastasia M.
Ciuffreda P.
Fiecchi A.
Scala A.
J.
Chem. Soc., Chem. Commun.
1988,
57
<A NAME="RW05910ST-4C">4c </A>
Yadav JS.
Redd BVS.
Srinivas M.
Divyavani C.
Kunwarb AC.
Madavi C.
Tetrahedron
Lett.
2007,
47:
8301
<A NAME="RW05910ST-4D">4d </A>
Yadav JS.
Redd BVS.
Satheesh G.
Narasimhulu G.
Portier Y.
Madhavi C.
Kunwar AC.
Tetrahedron Lett.
2008,
49:
3341
For representative examples, see:
<A NAME="RW05910ST-5A">5a </A>
Elassar A.-ZA.
El-Khair AA.
Tetrahedron
2003,
59:
8463
<A NAME="RW05910ST-5B">5b </A>
Makabe O.
Murai Y.
Fukatus S.
Heterocycles
1979,
13:
239
<A NAME="RW05910ST-5C">5c </A>
Jensen EM.
Papadopoulos EP.
Heterocycles
1983,
20:
2233
<A NAME="RW05910ST-5D">5d </A>
Akiyama Y.
Abe J.
Takanu T.
Kawasaki T.
Sakamoto M.
Chem. Pharm.
Bull.
1984,
32:
2821
For examples and reviews of solvent-free
reactions, see:
<A NAME="RW05910ST-6A">6a </A>
Jensen T.
Madsen R.
J. Org. Chem.
2009,
74:
3990
<A NAME="RW05910ST-6B">6b </A>
Kamata K.
Nakagawa Y.
Yamaguchi K.
Mizuno N.
J. Am. Chem. Soc.
2008,
130:
15304
<A NAME="RW05910ST-6C">6c </A>
Kuhn KM.
Grubbs RH.
Org.
Lett.
2008,
10:
2075
<A NAME="RW05910ST-6D">6d </A>
Mukherjee D.
Shah BA.
Gupta P.
Taneja SC.
J. Org. Chem.
2007,
72:
8965
<A NAME="RW05910ST-6E">6e </A>
Tanaka K.
Toda F.
Chem. Rev.
2000,
100:
1025
<A NAME="RW05910ST-6F">6f </A>
Loupy A.
Top.
Curr. Chem.
1999,
206:
153
<A NAME="RW05910ST-6G">6g </A>
Singh NB.
Singh RJ.
Singh NP.
Tetrahedron
1994,
50:
6441
<A NAME="RW05910ST-6H">6h </A>
Ramamurthy V.
Venkatesan K.
Chem. Rev.
1987,
87:
433
For solvent-free C-glycosidation,
see:
<A NAME="RW05910ST-7A">7a </A>
Massi A.
Nuzzi A.
Dondoni A.
J.
Org. Chem.
2007,
72:
10279
For solvent-free O-glycosidation, see:
<A NAME="RW05910ST-7B">7b </A>
Aich U.
Loganathan D.
Carbohydr. Res.
2006,
341:
19
<A NAME="RW05910ST-7C">7c </A>
Lin H.-C.
Chang C.-C.
Chen J.-Y.
Lin C.-H.
Tetrahedron: Asymmetry
2005,
16:
297
<A NAME="RW05910ST-7D">7d </A>
de Oliveira RN.
de Freitas Filho JR.
Srivastava RM.
Tetrahedron
Lett.
2002,
43:
2141
<A NAME="RW05910ST-7E">7e </A>
Sowmya S.
Balasubramanian KK.
Synth. Commun.
1994,
24:
2097
Michael-type addition to 2-nitroglycals
was shown to be a useful method for the synthesis of many N -, O -, S -, P - and C -glycosides. For representative examples,
see:
<A NAME="RW05910ST-8A">8a </A>
Winterfeld GA.
Das J.
Schmidt RR.
Eur. J. Org. Chem.
2000,
3047
<A NAME="RW05910ST-8B">8b </A>
Khodair AI.
Pachamuthu K.
Schmidt RR.
Synthesis
2004,
53
<A NAME="RW05910ST-8C">8c </A>
Winterfeld GA.
Khodair AI.
Schmidt RR.
Eur. J. Org. Chem.
2003,
1009
<A NAME="RW05910ST-8D">8d </A>
Barroca N.
Schmidt RR.
Org. Lett.
2004,
6:
1551
<A NAME="RW05910ST-8E">8e </A>
Pachamuthu K.
Figueroa-Perez I.
Ali IAI.
Schmidt RR.
Eur.
J. Org. Chem.
2004,
3959
<A NAME="RW05910ST-8F">8f </A>
Pachamuthu K.
Schmidt RR.
Synlett
2003,
1355
<A NAME="RW05910ST-9">9 </A>
Winterfeld GA.
Schmidt RR.
Angew. Chem. Int.
Ed.
2001,
40:
2654
For representative examples of
Michael addition reactions, see:
<A NAME="RW05910ST-10A">10a </A>
Cai C.
Soloshonok VA.
Hruby VJ.
J. Org. Chem.
2001,
66:
1339
<A NAME="RW05910ST-10B">10b </A>
Sundararajan G.
Prabagaran N.
Org. Lett.
2001,
3:
389
<A NAME="RW05910ST-10C">10c </A>
Hoz S.
Acc.
Chem. Res.
1993,
26:
69
<A NAME="RW05910ST-11">11 </A>
General experimental procedure: A
mixture of 2-nitro-d -glucal 1 (1.0
mmol) and enamino ester 2 (1.2 mmol) was heated
to the specified temperature in a silicone oil bath, as indicated
in Table 1. The progress of the reaction was monitored by TLC. Upon
completion, the reaction mixture was cooled to room temperature
and purified by column chromatography using a mixture of ethyl acetate
and petroleum ether as the eluent to furnish the target product.
<A NAME="RW05910ST-12">12 </A> For the preparation of enamino esters,
see:
Li A.-H.
Moro S.
Melman N.
Ji XD.
Jacobson KA.
J. Med. Chem.
1998,
41:
3186
<A NAME="RW05910ST-13">13 </A>
The crystal structures of 3d and 3i have
been deposited at the Cambridge Crystallographic Data Centre and
allocated the deposition numbers CCDC 778452 and 778453, respectively.
For the preparation of heterocyclic
enamino esters, see:
<A NAME="RW05910ST-14A">14a </A>
Jones K.
Newton RF.
Yarnold CJ.
Tetrahedron
1996,
52:
4133
<A NAME="RW05910ST-14B">14b </A>
Célérier J.-P.
Deloisy E.
Lhommet G.
Maitte P.
J. Org. Chem.
1979,
44:
3089
<A NAME="RW05910ST-15">15 </A> For the preparation of nitro-substituted
heterocyclic enamines, see:
Hutchinson IS.
Matlin SA.
Mete A.
Tetrahedron Lett.
2001,
42:
1773
<A NAME="RW05910ST-16A">16a </A>
Pachamuthu K.
Gupta A.
Das J.
Schmidt RR.
Vankar YD.
Eur. J. Org. Chem.
2002,
1479
<A NAME="RW05910ST-16B">16b </A>
Baumberger F.
Vasella AI.
Helv. Chim. Acta
1983,
66:
2210
<A NAME="RW05910ST-16C">16c </A>
Tokunaga Y.
Ihara M.
Fukumoto K.
J.
Chem. Soc., Perkin Trans. 1
1997,
207
<A NAME="RW05910ST-17A">17a </A>
Yang G.
Franck RW.
Bittman R.
Samadder P.
Arthur G.
Org. Lett.
2001,
3:
197
<A NAME="RW05910ST-17B">17b </A>
Burkhart F.
Hoffmann M.
Kessler H.
Angew.
Chem. Int. Ed.
1997,
36:
1191
<A NAME="RW05910ST-17C">17c </A>
Roe BA.
Bogamra CG.
Griggs JL.
Bertozzi CR.
J.
Org. Chem.
1996,
61:
6442
<A NAME="RW05910ST-17D">17d </A>
Montreuil J.
Adv.
Carbohydr. Chem. Biochem.
1980,
37:
157
<A NAME="RW05910ST-17E">17e </A>
Kornfeld R.
Kornfeld S.
Annu. Rev. Biochem.
1976,
45:
217
For reduction of nitro groups,
see:
<A NAME="RW05910ST-18A">18a </A>
Zou W.
Wu A.-T.
Bhasin M.
Sandbhor M.
Wu S.-H.
J. Org. Chem.
2007,
72:
2686
<A NAME="RW05910ST-18B">18b </A>
Wurz RP.
Charette AB.
J.
Org. Chem.
2004,
69:
1262 ;
and references cited therein
<A NAME="RW05910ST-18C">18c </A>
Solé D.
Bonjoch J.
García-Rubio S.
Peidró E.
Bosch J.
Angew. Chem. Int. Ed.
1999,
38:
395