Abstract
The Michael reaction of a dialkyl malonate with a cyclic enone
using a chiral diamine-acid combination catalyst gave the
desired Michael adduct in high yield with excellent enantiomeric
excess in a protic solvent such as methanol and ethanol. The methanol molecule
participates in a proton relay system in which the dialkyl malonate
is activated through hydrogen bonding to afford the Michael adduct
with excellent enantioselectivity.
Key words
enone - malonate - Michael addition - organocatalysis - proton relay
References and Notes
For recent reviews on organocatalytic
Michael reactions, see:
1a
Enders D.
Wang C.
Liebich JX.
Chem.
Eur. J.
2009,
15:
11058
1b
Bartoli G.
Melchiorre P.
Synlett
2008,
1759
1c
Vicario JL.
Badía D.
Carrillo L.
Synthesis
2007,
2065
1d
Sulzer-Mossé S.
Alexakis A.
Chem. Commun.
2007,
3123
1e
Almaºi D.
Alonso DA.
Nájera C.
Tetrahedron: Asymmetry
2007,
18:
299
1f
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
For iminium catalysis on cyclic
enones, see:
2a
Hanessian S.
Pham V.
Org. Lett.
2000,
2:
2975
2b
Benaglia M.
Cinquini M.
Cozzi F.
Puglisi A.
Celentano G.
J.
Mol. Catal. A: Chem.
2003,
204-205:
157
2c
Tsogoeva SB.
Jagtap SB.
Ardemasova ZA.
Kalikhevich VN.
Eur.
J. Org. Chem.
2004,
4014
2d
Hanessian S.
Govindan S.
Warrier JS.
Chirality
2005,
17:
540
2e
Prieto A.
Halland N.
Jørgensen KA.
Org. Lett.
2005,
7:
3897
2f
Mitchell CET.
Brenner SE.
Ley SV.
Chem. Commun.
2005,
5346
2g
Mečiarová M.
Toma Š.
Kotrusz P.
Org. Biomol. Chem.
2006,
4:
1420
2h
Mitchell CET.
Brenner SE.
García-Fortanet J.
Ley SV.
Org. Biomol. Chem.
2006,
4:
2039
2i
Tsogoeva SB.
Jagtap SB.
Ardemasova ZA.
Tetrahedron: Asymmetry
2006,
17:
989
2j
Hanessian S.
Shao Z.
Warrier JS.
Org.
Lett.
2006,
8:
4787
2k
Xie J.-W.
Yue L.
Chen W.
Du W.
Zhu J.
Deng J.-G.
Chen Y.-C.
Org. Lett.
2007,
9:
413
2l
Li P.
Wang Y.
Liang X.
Ye J.
Chem. Commun.
2008,
3302
2m
Malmgren M.
Granander J.
Amedjkouh M.
Tetrahedron:
Asymmetry
2008,
19:
1934
2n
Moon HW.
Cho MJ.
Kim DY.
Tetrahedron Lett.
2009,
50:
4896
2o
Paixão MW.
Holub N.
Vila C.
Nielsen M.
Jørgensen KA.
Angew. Chem. Int. Ed.
2009,
48:
7338
For other organocatalytic Michael
additions to cyclic enones, see:
3a
Tang H.-Y.
Lu A.-D.
Zhou Z.-H.
Zhao G.-F.
He L.-N.
Tang C.-C.
Eur. J. Org. Chem.
2008,
1406
3b
Wu F.
Li H.
Hong R.
Deng L.
Angew. Chem. Int. Ed.
2006,
45:
947
3c
Perdicchia D.
Jørgensen KA.
J. Org.
Chem.
2007,
72:
3565
3d
Cid MB.
Lopez-Cantarero J.
Duce S.
Ruano JLG.
J. Org. Chem.
2009,
74:
431
3e
Shirakawa S.
Kimura T.
Murata S.-I.
Shimizu S.
J. Org. Chem.
2009,
74:
1288
For iminium catalysis in Michael
addition of malonate to cyclic enones, see:
4a
Yamaguchi M.
Shiraishi T.
Hirama M.
Angew.
Chem. Int. Ed.
1993,
32:
1176
4b
Kawara A.
Taguchi T.
Tetrahedron Lett.
1994,
35:
8805
4c
Yamaguchi M.
Shiraishi T.
Hirama M.
J.
Org. Chem.
1996,
61:
3520
4d
Halland N.
Aburel PS.
Jørgensen KA.
Angew. Chem. Int. Ed.
2003,
42:
661
4e
Knudsen KR.
Mitchell CET.
Ley SV.
Chem. Commun.
2006,
66
4f
Prasetyanto EA.
Lee S.-C.
Jeong S.-M.
Park S.-E.
Chem. Commun.
2008,
1995
4g
Wascholowski V.
Knudsen KR.
Mitchell CET.
Ley SV.
Chem.
Eur. J.
2008,
14:
6155
4h
Riguet E.
Tetrahedron
Lett.
2009,
50:
4283
4i
Yoshida M.
Narita M.
Hirama K.
Hara S.
Tetrahedron Lett.
2009,
50:
7297
For other organocatalytic Michael
additions of nucleophiles to cyclic enones, see:
5a
Jiang Z.
Ye W.
Yang Y.
Tan C.-H.
Adv. Synth. Catal.
2008,
350:
2345
5b
Li P.
Wen S.
Yu F.
Liu Q.
Li W.
Wang Y.
Liang X.
Ye J.
Org. Lett.
2009,
11:
753
For pioneering studies on metal-complex
catalysis in Michael addition of malonate to cyclic enones, see:
6a
Sasai H.
Arai T.
Shibasaki M.
J.
Am. Chem. Soc.
1994,
116:
1571
6b
Sasai H.
Arai T.
Satow Y.
Houk
KN.
Shibasaki M.
J.
Am. Chem. Soc.
1995,
117:
6194
7 Only one example of high enantioselectivity
(>90% ee) in iminium catalysis using a primary-secondary
diamine catalyst, reported by Zhao’s group, has been identified: Yang Y.-Q.
Zhao G.
Chem.
Eur. J.
2008,
14:
10888
8 http://www.msg.ameslab.gov/GAMESS/.
See also Supporting Information.
9a
Dinér P.
Nielsen M.
Marigo M.
Jørgensen KA.
Angew. Chem. Int. Ed.
2007,
46:
1983
9b In case of phenyl substituent 1B is preferred (R¹ = t-Bu, R² = Ph, ΔE = 0.7 kcal/mol).
10a
Erkkilä A.
Majander I.
Pihko PM.
Chem. Rev.
2007,
107:
5416
10b
Mielgo A.
Palomo C.
Chem. Asian J.
2008,
3:
922
11 Reactions probably proceed through
ammonium enolate mechanism using the catalyst not having acid moiety,
such as 5, 10,
and 11. See also: Wong CT.
Tetrahedron
2009,
65:
7491
An effective catalyst combination
was identified using a fluorescence detection system for carbon-carbon
bond formation, and then it was used for enantioselective aldol and
Michael reactions:
12a
Mase N.
Tanaka F.
Barbas
CF.
Angew. Chem. Int. Ed.
2004,
43:
2420
12b
Mase N.
Thayumanavan R.
Tanaka F.
Barbas CF.
Org. Lett.
2004,
6:
2527
12c
Mase N.
Nakai Y.
Ohara N.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J.
Am. Chem. Soc.
2006,
128:
734
12d
Mase N.
Watanabe K.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J. Am. Chem.
Soc.
2006,
128:
4966
12e
Mase N.
Noshiro N.
Mokuya A.
Takabe K.
Adv. Synth. Catal.
2009,
351:
2791
13a
Sakthivel K.
Notz W.
Bui T.
Barbas CF.
J.
Am. Chem. Soc.
2001,
123:
5260
13b
Saito S.
Nakadai M.
Yamamoto H.
Synlett
2001,
1245
13c
Saito S.
Yamamoto H.
Acc. Chem. Res.
2004,
37:
570
13d
Dambruoso P.
Massi A.
Dondoni A.
Org.
Lett.
2005,
7:
4657
13e
Pansare SV.
Pandya K.
J. Am. Chem.
Soc.
2006,
128:
9624
14
Typical Procedure
for the Direct Michael Reaction of the Malonate 15 with the Enone
14 Using Catalyst 12 (Table 3, entry 1): A catalyst stock solution
(1.0 M in MeOH) was prepared as a mixture of (S)-(+)-1-(2-pyrrolidinyl-methyl)pyrrolidine
(11, 0.5 mmol) and trifluoroacetic acid (0.5
mmol) in anhyd MeOH (0.5 mL) before use. 2-Cyclopentenone (14c, 0.5 mmol) was dissolved in MeOH (0.45
mL) and dibenzyl malonate (15a, 0.6 mmol)
was added. To the mixture the catalyst stock solution (1.0 M in MeOH,
50 µL, 0.05 mmol) was added at 25 ˚C. After stirring for
48 h, the reaction mixture was directly purified by column chromatography
(silica gel 5 g, hexanes-EtOAc, 90:10) to afford the Michael
product 16a (98% yield, 94% ee).
The enantiomeric excess (ee) of Michael products was determined
by chiral-phase HPLC analysis and/or ¹³C
NMR (see Supporting Information). The absolute configuration of Michael
products was determined by comparison of the reported specific optical
rotation and HPLC data.
15a
Toba S.
Colombo G.
Merz KM.
J. Am. Chem. Soc.
1999,
121:
2290
15b
Heine A.
DeSantis G.
Luz JG.
Mitchell M.
Wong C.-H.
Wilson IA.
Science
2001,
294:
369
16
Perrard T.
Plaquevent J.-C.
Desmurs J.-R.
Hébrault D.
Org. Lett.
2000,
2:
2959
17
Curran DP.
Zhang Q.
Adv. Synth. Catal.
2003,
345:
329
18 [α]D
²7 -117.8˚ (c = 1.0, CHCl3);
Lit. [α]D
¹8 -119.4˚ (c = 0.89, CHCl3, >98% ee): Posner GH.
Asirvatham E.
J.
Org. Chem.
1985,
50:
2589
19a
Hill RK.
Edwards AG.
Tetrahedron
1965,
21:
1501
19b
Demole E.
Stoll M.
Helv. Chim. Acta
1962,
45:
692