Subscribe to RSS
DOI: 10.1055/s-0030-1258550
Nickel Boride
Dedicated to my honorable mentor Prof. J. M. Khurana
Publication History
Publication Date:
03 September 2010 (online)
Biographical Sketches
Introduction
Nickel boride (Ni2B), first reported in the pioneering work of Schlezinger and Brown [¹] and traditionally used as a catalyst for hydrogenation, [²] has more recently found a niche as a reducing agent in its own right. [³] Its ease of preparation, handling, and versatility as a reducing agent promise nickel boride its deserved attention from academic and industrial sectors. Nickel boride has been employed for a wide range of transformations including reductive dehalogenation of organic halides [4] , reductive amination of carbonyl compounds, [5] desulfurization of a variety of thioxo compounds, [6] deoxygenation of sulfoxides and selenoxides, [7] and reducing of nitrogen functionalities. [8] Of late, the reagent is being explored in the form of a nickel boride silica nanocomposite catalyst for hydrogen production from NaBH4 hydrolysis. [9]
Preparation and Properties
The reagent can be generated by using nickel(II) salts in conjunction with sodium borohydride in protic conditions to deposit finely divided black precipitates of nickel boride. [¹0]
Abstracts
(A) The reduction of α,β-unsaturated five-membered lactones and lactams to saturated lactones and lactams has been achieved using nickel boride. [¹¹] Ex situ generated SC-1 nickel boride is used for the selective 1,4-hydrogenation of α,β-unsaturated ketones and aldehydes. [¹²] | |
(B) The chemoselective reduction of double bonds in chalcones, α,β-unsaturated ketones, aldehydes, carboxylic acids, and esters using nickel boride has been reported. [¹³] The rapid reduction of chalcones to tetrahydrochalcones has also been achieved. [¹4] | |
(C) The chemoselective cleavage of benzyl esters with nickel boride affords carboxylic acids in good yields. Dibenzyl esters are also successfully cleaved. Methyl, ethyl, t-butyl, and trityl esters are reported to be not affected under the reaction conditions, thereby imparting selectivity. [¹5] | |
(D) In situ generated nickel boride has been described to efficiently reduce carbonyl compounds to alcohols. [¹6] Benzopyrones have been reduced to cis-benzopyran-4-ols. [¹7] | |
(E) Nickel boride has proved to be an efficient reducing agent for various nitrogen functionalities. It is reported to reduce nitriles to amines, [¹8] the concept being modified to obtain Boc-protected nitriles. [¹9] Further, Ni2B-BER has been reported to reduce oximes into amines. [²0] Recently, nickel boride has been utilized to reduce the hydrazine functionality developing a novel method towards 4-aminoquinolines. [²¹] | |
(F) Recent efforts have been directed to study the feasibility of new materials to be used as support for boron nickel catalysts. [²²] Ni/SiO2-NaBH4 is reported to achieve the reduction of different aliphatic and aromatic functional groups with 100% conversion and selectivity. [²³] |
- 1
Schlesinger HI, andBrown HC. inventors; US Patent 2461661. -
2a
Paul R.Buisson P.Joseph N. Compt. Rend. 1951, 23: 627 -
2b
Paul R.Buisson P.Joseph N. Ind. Eng. Chem. 1952, 44: 1006 - 3
Ganem B.Osby JO. Chem. Rev. 1986, 86: 763 - 4
Khurana JM.Kumar S.Nand B. Can. J. Chem. 2008, 86: 1052 - 5
Saxena I.Borah R.Sarma JC. J. Chem. Soc., Perkin Trans. 1 2000, 503 -
6a
Khurana JM.Kukreja G.Bansal G. J. Chem. Soc., Perkin Trans. 1 2002, 2520 -
6b
Khurana JM.Kukreja G. J. Heterocycl. Chem. 2003, 40: 677 -
6c
Khurana JM.Agrawal A.Kukreja G. Heterocycles 2006, 68: 1885 -
6d
Khurana JM.Sharma V. Chem. Heterocycl. Compd. 2008, 3: 309 - 7
Khurana JM.Ray A.Singh S. Tetrahedron Lett. 1998, 39: 3829 -
8a
Rao HSP.Reddy KS.Turnbull K.Borchers V. Synth. Commun. 1992, 22: 1339 -
8b
Seltzmann HH.Berrang BD. Tetrahedron Lett. 1993, 34: 3083 -
8c
Nose A.Kudo T. Chem. Pharm. Bull. Jpn. 1989, 37: 816 - 9
Chen Y.Kim H. Fuel. Process. Tech. 2008, 89: 966 - 10
Schlesinger HI.Brown HC.Finholt AE.Galbreath JR.Hoeckstra HR.Hyde EK. J. Am. Chem. Soc. 1953, 75: 215 - 11
Abe N.Fujisaki F.Sumoto K.Miyam S. Chem. Pharm. Bull. Jpn. 1991, 39: 1167 - 12
Belisle CM.Young YM.Singaram B. Tetrahedron Lett. 1994, 35: 5595 - 13
Khurana JM.Sharma P. Bull. Chem. Soc. Jpn. 2004, 77: 549 - 14
Khurana JM.Kiran J. Chem. Res. (S) 2006, 374 - 15
Khurana JM.Arora R. Synthesis 2009, 1127 - 16
Khurana JM.Chauhan S. Synth. Commun. 2001, 31: 3485 - 17
Khurana JM.Chauhan S. J. Chem. Res. (S) 2002, 201 ;
J. Chem. Res. (M) 2002, 519 - 18
Khurana JM.Kukreja G. Synth. Commun. 2002, 32: 1265 - 19
Caddick S.Judd DB.Lewis AKK.Reich MT.Williams MRV. Tetrahedron 2003, 59: 5417 - 20
Cheng JR.Wen J.Li YZ.Guo XY.Huang RQ. Chem. J. Chin. Univ. 2001, 22: 91 - 21
Gemma S.Kukreja G.Tripaldi P.Altarelli M.Bernetti M.Franceschini S.Savini L.Campiani G.Fattorusso C.Butini S. Tetrahedron Lett. 2008, 49: 2074 - 22
Acosta D.Martinez J.Carrera C.Erdmann E.Gonzo E.Destéfanis H. Lat. Am. Appl. Res. 2006, 36: 317 - 23
Rahman A.Jonnalagadda SB. J. Mol. Catal. A: Chem. 2009, 299: 98
References
- 1
Schlesinger HI, andBrown HC. inventors; US Patent 2461661. -
2a
Paul R.Buisson P.Joseph N. Compt. Rend. 1951, 23: 627 -
2b
Paul R.Buisson P.Joseph N. Ind. Eng. Chem. 1952, 44: 1006 - 3
Ganem B.Osby JO. Chem. Rev. 1986, 86: 763 - 4
Khurana JM.Kumar S.Nand B. Can. J. Chem. 2008, 86: 1052 - 5
Saxena I.Borah R.Sarma JC. J. Chem. Soc., Perkin Trans. 1 2000, 503 -
6a
Khurana JM.Kukreja G.Bansal G. J. Chem. Soc., Perkin Trans. 1 2002, 2520 -
6b
Khurana JM.Kukreja G. J. Heterocycl. Chem. 2003, 40: 677 -
6c
Khurana JM.Agrawal A.Kukreja G. Heterocycles 2006, 68: 1885 -
6d
Khurana JM.Sharma V. Chem. Heterocycl. Compd. 2008, 3: 309 - 7
Khurana JM.Ray A.Singh S. Tetrahedron Lett. 1998, 39: 3829 -
8a
Rao HSP.Reddy KS.Turnbull K.Borchers V. Synth. Commun. 1992, 22: 1339 -
8b
Seltzmann HH.Berrang BD. Tetrahedron Lett. 1993, 34: 3083 -
8c
Nose A.Kudo T. Chem. Pharm. Bull. Jpn. 1989, 37: 816 - 9
Chen Y.Kim H. Fuel. Process. Tech. 2008, 89: 966 - 10
Schlesinger HI.Brown HC.Finholt AE.Galbreath JR.Hoeckstra HR.Hyde EK. J. Am. Chem. Soc. 1953, 75: 215 - 11
Abe N.Fujisaki F.Sumoto K.Miyam S. Chem. Pharm. Bull. Jpn. 1991, 39: 1167 - 12
Belisle CM.Young YM.Singaram B. Tetrahedron Lett. 1994, 35: 5595 - 13
Khurana JM.Sharma P. Bull. Chem. Soc. Jpn. 2004, 77: 549 - 14
Khurana JM.Kiran J. Chem. Res. (S) 2006, 374 - 15
Khurana JM.Arora R. Synthesis 2009, 1127 - 16
Khurana JM.Chauhan S. Synth. Commun. 2001, 31: 3485 - 17
Khurana JM.Chauhan S. J. Chem. Res. (S) 2002, 201 ;
J. Chem. Res. (M) 2002, 519 - 18
Khurana JM.Kukreja G. Synth. Commun. 2002, 32: 1265 - 19
Caddick S.Judd DB.Lewis AKK.Reich MT.Williams MRV. Tetrahedron 2003, 59: 5417 - 20
Cheng JR.Wen J.Li YZ.Guo XY.Huang RQ. Chem. J. Chin. Univ. 2001, 22: 91 - 21
Gemma S.Kukreja G.Tripaldi P.Altarelli M.Bernetti M.Franceschini S.Savini L.Campiani G.Fattorusso C.Butini S. Tetrahedron Lett. 2008, 49: 2074 - 22
Acosta D.Martinez J.Carrera C.Erdmann E.Gonzo E.Destéfanis H. Lat. Am. Appl. Res. 2006, 36: 317 - 23
Rahman A.Jonnalagadda SB. J. Mol. Catal. A: Chem. 2009, 299: 98