Abstract
A very simple, safe and powerful method for the hydroxymethylation
of 2-bromoesters and lactones under anhydrous conditions that avoids
the use of gaseous formaldehyde is described. Moreover, under these
conditions, bromonitroalkanes were converted into the corresponding α-monohydroxymethylated
nitroalkanes, which are precursors of the corresponding α-amino
acids. Considering the easy transformation of ketones into bromonitroalkanes,
this represents a method for the formal synthesis of α-amino
acids from ketones.
Key words
hydroxymethylation - indium - esters - nitroalkanes - amino acids
References and Notes
1 Numerous examples account for the
use of gaseous formaldehyde. For a device for continuous production
by trioxane cracking, see: Kachi H.
He F.
Sakamoto K.
Chem. Express
1990,
5:
701
2a
Coe PL.
Löhr M.
Rochin C.
J. Chem. Soc., Perkin Trans.
1
1998,
2803
2b
Weyerstahl P.
Kressin H.
Nerdel F.
Liebigs
Ann. Chem.
1969,
725:
106
2c
Pernot R.
Bull.
Soc. Chim. Fr.
1950,
17:
682
3
Otero JM.
Soengas RG.
Estévez JC.
Estévez RJ.
Watkin DJ.
Evinson EL.
Nash RJ.
Fleet GWJ.
Org. Lett.
2007,
9:
623
4a
Park J.
Pedersen SF.
Tetrahedron
1992,
48:
2069
4b
Morimoto T.
Yamasaki K.
Hirano A.
Tsutsumi K.
Kagawa N.
Kakiuchi K.
Harada Y.
Fukumoto Y.
Chatani N.
Nishioka T.
Org. Lett.
2009,
11:
1777
5
Soengas RG.
Tetrahedron
Lett.
2010,
51:
105
6
General Procedure :
To a suspension of indium powder (0.5 mmol) in THF (1 mL), the 2-bromocompound
(0.75 equiv) was added and the mixture was sonicated for 20 min. Paraformaldehyde
(0.5 mmol) was then added and sonication was continued for a further
4 h. The reaction mixture was quenched with sat. aq NaHCO3 (10
mL) and extracted with Et2 O (3 × 25 mL). The
combined organic layers were dried over MgSO4 , filtered
and the solvent was evaporated in vacuo to obtain pure hydroxymethylated compounds.
7a
Birkhofer L.
Ritter A.
Wieden H.
Chem. Ber.
1962,
95:
971
7b
Vieregge H.
Arens JF.
Recl. Trav. Chim. Pays-Bas
1959,
78:
921
7c
Kawai Y.
Kondo S.
Tsujimoto M.
Nakamura K.
Ohno A.
Bull.
Chem. Soc. Jpn.
1994,
67:
2244
7d
Atuu MR.
Mahmood SJ.
Laib F.
Hossain MM.
Tetrahedron:
Asymmetry
2004,
15:
3091
8
Soengas RG.
Estévez AM.
Eur. J.
Org. Chem.
2010,
5109
9a
Knochel P.
Seebach D.
Tetrahedron
Lett.
1982,
23:
3897
9b
Otero JM.
Estévez AM.
Soengas RG.
Estévez JC.
Nash RJ.
Fleet GWJ.
Estévez RJ.
Tetrahedron: Asymmetry
2008,
19:
2443
10a
Marchand AP.
Arney BE.
Dave PR.
J.
Org. Chem.
1988,
53:
443
10b
Curini M.
Epifano F.
Marcotullio
MC.
Rosati O.
Rossi M.
Tetrahedron
1999,
55:
6211
11a
Dornow A.
Muller A.
Chem.
Ber.
1960,
93:
41
11b Taub B, and Hino JB. inventors; US Patent, US 319485.
11c
Fanta PE.
Samt RJ.
Piecz LF.
Clemens L.
J.
Org. Chem.
1966,
31:
3113
11d Trauth DM, Green GD, Swedo R, James RL, and Tomlinson IA. inventors; PCT Int. Appl., WO2009129097.