Abstract
The ester-substituted triscatechol ligand L-H6 can
be easily prepared in a triple imine condensation reaction. The
required trisamine is prepared starting from diphenylamine and 2-bromobenzoic
acid methylester. Upon coordination of titanium(IV) ions the tetrahedral
M4L4 coordination compound is obtained, which
due to the symmetry breaking substituent exists as a mixture of
isomers. However, the complex can be unambiguously characterized
by ESI-MS.
Key words
ligand - self assembly - coordination compound - imine - container molecule
References and Notes
1a
Cram DJ.
Cram JM.
Container molecules and their guests
RSC;
Cambridge:
1994.
1b
Warmuth R.
Chem. Commun.
1998,
60
1c
Scarso A.
Rebek J.
Top. Curr. Chem.
2006,
265:
1
1d
Saalfrank RW.
Maid H.
Scheurer A.
Angew. Chem. Int. Ed.
2008,
47:
8794 ; Angew. Chem.
2008, 120, 8924
Recent examples:
1e
Yoshizawa M.
Klosterman JK.
Fujita M.
Angew.
Chem. Int. Ed.
2009,
48:
3418 ; Angew. Chem.
2009, 121, 3470
1f
Mugridge JS.
Bergman RG.
Raymond KN.
J. Am. Chem. Soc.
2010,
132:
1182
2a
Albrecht M.
Janser I.
Fröhlich R.
Chem. Commun.
2005,
157
2b
Albrecht M.
Bull.
Chem. Soc. Jpn.
2007,
80:
797
2c
Albrecht M.
Janser I.
Meyer S.
Weis P.
Fröhlich R.
Chem.
Commun.
2003,
2854
2d
Albrecht M. In Activating unreactive substrates. The role of secondary interactions
Bolm C.
Hahn FE.
Wiley-VCH;
Weinheim:
2009.
2e
Albrecht M.
Janser I.
Runsink J.
Raabe G.
Weis P.
Fröhlich R.
Angew. Chem. Int. Ed.
2004,
43:
6662 ; Angew. Chem.
2004, 116, 6832
2f
Albrecht M.
Burk S.
Weis P.
Schalley CA.
Kogej M.
Synthesis
2007,
3736
2g
Albrecht M.
Janser I.
Fröhlich R.
Synthesis
2004,
1977
2h
Albrecht M.
Burk S.
Weis P.
Synthesis
2008,
2963
Related work by others:
3a
Amoroso AJ.
Jefferey JC.
Jones PL.
McCleverty JA.
Thornton P.
Ward MD.
Angew.
Chem., Int. Ed. Engl.
1995,
34:
1443 ; Angew. Chem. 1995, 107, 1577
3b
Paul RL.
Amoroso AJ.
Jones
PL.
Couchman SM.
Reeves ZR.
Rees LH.
Jefferey JC.
McCleverty JA.
Ward MD.
J.
Chem. Soc., Dalton Trans.
1999,
1563
3c
Brückner C.
Powers RE.
Raymond KN.
Angew. Chem. Int. Ed.
1998,
37:
1837 ; Angew. Chem. 1998, 110, 1937
3d
Caulder D.
Brückner C.
Powers RE.
König S.
Parac TN.
Leary JA.
Raymond KN.
J. Am. Chem. Soc.
2001,
123:
8923
3e
Saalfrank RW.
Glaser H.
Demleitner B.
Hampel F.
Chowdhry MM.
Schünemann V.
Trautwein AX.
Vaughan GBM.
Yeh R.
Davis AV.
Raymond KN.
Chem.
Eur. J.
2001,
8:
493
4
Albrecht M.
Janser I.
Burk S.
Weis P.
Dalton Trans.
2006,
2875
5
Kim YK.
Lee SJ.
Ahn KH.
J.
Org. Chem.
2000,
65:
7807
6 Characterization of L-H6:
mp 179 ˚C; ¹H NMR (300 MHz, DMSO-d
6): δ = 13.36,
12.89, 9.18 (three broad signals, 6 H total, OH), 9.02 (s, 1 H,
HC=N), 8.93 (s, 2 H, HC=N), 7.78-7.65
(m, 2 H, CHar), 7.40-7.32 (m, 5 H, CHar),
7.17-6.96 (m, 9 H, CHar), 6.85-6.74
(m, 4 H, CHar), 3.48 (s, 3 H, OCH3). MS (EI,
70 eV): m/z = 709 [M + H] +.
Anal. Calcd for C41H32N4O8 (708.71):
C, 69.48; H, 4.55; N, 7.91. Found: C, 69.39; H, 4.08; N, 8.00.
For ESI-MS as characterization tool
in supramolecular chemistry, see:
7a
Schalley CA.
Int. J. Mass Spectrom.
2000,
194:
11
7b
Schalley CA.
Mass Spectrom. Rev.
2001,
20:
253