References and Notes
1a
Berkessel A.
Gröger H. In
Asymmetric Organocatalysis
Wiley-VCH;
Weinheim:
2004.
1b
Enantioselective
Organocatalysis
Dalko PI.
Wiley-VCH;
Weinheim:
2007.
1c
Organocatalysis
Reetz MT.
List B.
Jaroch S.
Weinmann H.
Springer;
Berlin:
Heidelberg:
2008.
For reviews on asymmetric Michael
addition reactions, see:
2a
Sibi MP.
Manyem S.
Tetrahedron
2000,
56:
8033
2b
Krause N.
Hoffmann-Röder A.
Synthesis
2001,
171
2c
Berner OM.
Tedeschi L.
Enders D.
Eur. J. Org. Chem.
2002,
1877
2d
Christoffers A.
Baro A.
Angew. Chem. Int. Ed.
2003,
42:
1688
2e
Christoffers J.
Koripelly G.
Rosiak A.
Rössle M.
Synthesis
2007,
1279
2f
Enders D.
Saint-Dizier A.
Lannou MI.
Lenzen A.
Eur. J. Org. Chem.
2006,
29
2g
Enders D.
Luttgen K.
Narine AA.
Synthesis
2007,
959
For reviews on 1,4-addition reactions
catalyzed by organocatalysts, see:
3a
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
3b
Almaşi D.
Alonso DA.
Nájera C.
Tetrahedron: Asymmetry
2007,
18:
299
3c
Vicario JL.
Badía D.
Carrillo L.
Synthesis
2007,
2065
3d
Sulzer-Mossé S.
Alexakis A.
Chem. Commun.
2007,
3123
3e
Enders D.
Wang C.
Liebich JX.
Chem.
Eur. J.
2009,
15:
11058
4 For a recent review concerning the
organocatalytic addition of ketones to nitroalkenes, see: Roca-López D.
Sádaba D.
Delso I.
Herrera RP.
Tejero T.
Merino P.
Tetrahedron: Asymmetry
2010,
21:
2561
5a
Ono N.
The Nitro
Group in Organic Synthesis
Wiley-VCH;
New
York:
2001.
5b
Ballini R.
Petrini M.
Tetrahedron
2004,
60:
1017
For pioneering examples, see:
6a
List B.
Pojarliev PH.
Martin HJ.
Org. Lett.
2001,
3:
2423
6b
Betancort JM.
Barbas CF.
Org.
Lett.
2001,
3:
3737
6c
Enders D.
Seki A.
Synlett
2002,
26
For selected examples, see:
7a
Huang H.
Jacobsen EN.
J. Am. Chem. Soc.
2006,
128:
7170
7b
Yalalov DA.
Tsogoeva SB.
Schmatz S.
Adv. Synth. Catal.
2006,
348:
826
7c
Gun Q.
Guo X.-T.
Wu X.-Y.
Tetrahedron
2009,
65:
5265
7d
Peng L.
Xu X.-Y.
Wang L.-L.
Huang J.
Bai J.-F.
Huang Q.-C.
Wang L.-X.
Eur.
J. Org. Chem.
2010,
2978
8
Sayago FJ.
Jiménez AI.
Cativiela C.
Tetrahedron: Asymmetry
2007,
18:
2358
9
Sayago FJ.
Calaza MI.
Jiménez AI.
Cativiela C.
Tetrahedron
2008,
64:
84
For selected examples, see:
10a
Hurst M.
Jarvis B.
Drugs
2001,
61:
867
10b
Reissmann S.
Imhof D.
Curr. Med. Chem.
2004,
11:
2823
10c
Gass J.
Khosla C.
Cell. Mol. Life Sci.
2007,
64:
345
For selected examples, see:
11a
Bellemère G.
Vaudry H.
Morain P.
Jégou S.
J.
Neuroendocrinol.
2005,
17:
306
11b
Curran MP.
McCormack PL.
Simpson D.
Drugs
2006,
66:
235
11c
Bas M.
Bier H.
Greve J.
Kojda G.
Hoffmann TK.
Allergy
2006,
61:
1490
11d
Sorbera LA.
Fernández-Forner D.
Bayes M.
Drug Future
2006,
31:
101
For reviews on enamine catalysis,
see:
12a
List B.
Synlett
2001,
1675
12b
List B.
Tetrahedron
2002,
58:
5573
12c
List B.
Chem.
Commun.
2006,
819
12d
Marigo M.
Jørgensen KA.
Chem.
Commun.
2006,
2001
12e
Mukherjee S.
Yang J.-W.
Hoffmann S.
List B.
Chem. Rev.
2007,
107:
5471
12f
Pihko PM.
Majander I.
Erkilä A.
Top. Curr. Chem.
2010,
291:
29
13 During the development of our project,
a novel application of structure 4 analogue
as organocatalyst has been reported: Luo R.-S.
Weng J.
Ai H.-B.
Lu G.
Chan ASC.
Adv. Synth.
Catal.
2009,
351:
2449
14 For the single reported example
of 4 as suitable organocatalyst, see: Tang X.
Liégault B.
Renaud J.-L.
Bruneau C.
Tetrahedron:
Asymmetry
2006,
17:
2187
15
Typical Experimental
Procedure
To a suspension of catalyst (10 mol%)
and nitroalkene (0.5 mmol) in DMF (4 mL), acetone (13.5 mmol, 1
mL) was added, and the resulting mixture was stirred at 25 ˚C
for the time indicated in Table
[³]
.
After that time the reaction was quenched with sat. NH4Cl
(2 × 20 mL), the layers were separated
and the aqueous layer extracted with EtOAc (3 × 25
mL). The combined organic layers were washed with brine (2 × 20
mL), dried (MgSO4), filtered, and rotatory evaporated
to give a residue which was purified by flash chromatography using
hexane-EtOAc (7:3) as an eluent.
Selected
Spectral Data
Compound 8j:
Following the general procedure, compound 8j was
obtained after 10 d at r.t. as a white solid in 68% yield; mp
135-136 ˚C. ¹H NMR (400 MHz,
CD3OD): δ = 2.05
(s, 3 H), 2.88 (dd, J = 2.6,
7.2 Hz, 2 H), 3.82-3.89 (m, 1 H), 4.57 (dd, J = 9.2, 12.4
Hz, 1 H), 4.70 (dd, J = 6.3,
12.4 Hz, 1 H), 6.70-6.74 (m, 2 H), 7.06-7.10 (m,
2 H). ¹³C NMR (100 MHz, CD3OD): δ = 30.4,
40.0, 47.2, 80.9, 116.5, 129.8, 131.5, 157.9, 208.8. The ee of the
product was determined by HPLC using a Daicel Chiralpak IA column
(n-hexane-i-PrOH = 90:10,
flow rate 1 mL/min, λ = 230
nm): t
R(major) = 29.1
min; t
R(minor) = 26.9
min. HRMS: m/z calcd for C11H13NNaO4:
246.0737; found: 246.0728 [M+ + Na]. [α]D
²² 7.3
(c 1.0, MeOH, 33% ee).
Compound 8k: Following the general procedure, compound 8k was obtained after 10 d at r.t. as a
yellow oil in 74% yield; mp 131-133 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 2.11
(s, 3 H), 2.88 (d, J = 7.1
Hz, 2 H), 3.96 (q, J = 7.1
Hz, 1 H), 4.55 (dd, J = 7.8,
12.2 Hz, 1 H), 4.65 (dd, J = 6.8,
12.2 Hz, 1 H), 5.02 (s, 1 H), 6.91-6.95 (m, 2 H), 7.12-7.15
(m, 2 H), 7.31-7.44 (m, 5 H). ¹³C
NMR (100 MHz, CDCl3): δ = 30.3,
38.3, 46.2, 70.0, 79.6, 115.2, 127.4, 128.0, 128.4, 128.5, 130.9, 136.7,
158.3, 205.5. The ee of the product was determined by HPLC using
a Daicel Chiralpak IA column (n-hexane-i-PrOH = 97:3,
flow rate 1 mL/min, λ = 230
nm): t
R(major) = 44.5
min; t
R(minor) = 41.1
min. HRMS: m/z calcd for C18H19NNaO4:
336.1206; found: 336.1215 [M+ + Na].
Compound 8l: Following the general procedure, compound 8l was obtained after 2 d at r.t. as a
yellow oil in 67% yield. ¹H NMR (300
MHz, CDCl3): δ = 2.13
(s, 3 H), 2.88 (d, J = 6.9
Hz, 2 H), 3.97 (q, J = 6.9
Hz, 1 H), 4.56 (dd, J = 8.1, 12.6
Hz, 1 H), 4.67 (dd, J = 6.3,
12.6 Hz, 1 H), 7.07 (dd, J = 2.1,
8.4 Hz, 1 H), 7.32 (d, J = 2.1
Hz, 1 H), 7.39 (d, J = 8.4
Hz, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 30.2,
38.0, 45.7, 78.8, 126.9, 129.4, 130.9, 132.0, 133.0, 139.1, 204.6. The
ee of the product was determined by HPLC using a Daicel Chiralpak
IA column (n-hexane-i-PrOH = 97:3,
flow rate 1 mL/min, λ = 230
nm): t
R(major) = 29.1
min; t
R(minor) = 26.1
min. HRMS: m/z calcd for C11H11Cl2NNaO3:
298.0008; found: 298.0007 [M+ + Na]. [α]D
²² -1.53
(c 1.0, CHCl3, 44% ee).
16 For the single reported example
of 2 as suitable organocatalyst, see: Vignola N.
List B.
J. Am. Chem.
Soc.
2004,
126:
450
17
Flores-Ortega A.
Jiménez AI.
Cativiela C.
Nussinov R.
Alemán C.
Casanovas J.
J. Org.
Chem.
2008,
73:
3418
For scarce reported examples of 3 as suitable organocatalyst, see:
18a
Kunz RK.
MacMillan DWC.
J.
Am. Chem. Soc.
2005,
127:
3240
18b
Hartikka A.
Arvidsson PI.
J. Org. Chem.
2007,
72:
5874
19a
Mitchell CET.
Cobb AJA.
Ley SV.
Synlett
2005,
611
19b
Huang H.
Jacobsen EN.
J. Am. Chem. Soc.
2006,
128:
7170
19c
Laars M.
Ausmess K.
Uudesmaa M.
Tamm T.
Kanger T.
Lopp M.
J. Org. Chem.
2009,
74:
3772
19d
Tan B.
Zeng X.
Lu Y.
Chua PJ.
Zhong G.
Org.
Lett.
2009,
11:
1927
20a
Wang J.
Li H.
Lou B.
Zu L.
Guo H.
Wang W.
Chem. Eur. J.
2006,
12:
4321
20b
Arno M.
Zaragoza RJ.
Domingo LR.
Tetrahedron: Asymmetry
2007,
18:
157
20c
Okuyama Y.
Nakano H.
Watanabe Y.
Makabe M.
Takeshita M.
Uwai K.
Kabuto C.
Kwon E.
Tetrahedron Lett.
2009,
50:
193
21
Wiesner M.
Upert G.
Angelici G.
Wennemers H.
J. Am. Chem. Soc.
2010,
132:
6
22
Xue F.
Zhang S.
Duan W.
Wang W.
Adv.
Synth. Catal.
2008,
250:
2194
23
Evans DA.
Seidel D.
J. Am. Chem. Soc.
2005,
127:
9958
24 All calculations were carried
out with the Gaussian 09 suite of programs: Frisch MJ.
Trucks GW.
Schlegel HB.
Scuseria GE.
Robb MA.
Cheeseman JR.
Scalmani G.
Barone V.
Mennucci B.
Petersson GA.
Nakatsuji H.
Caricato M.
Li X.
Hratchian HP.
Izmaylov AF.
Bloino J.
Zheng G.
Sonnenberg JL.
Hada M.
Ehara M.
Toyota K.
Fukuda R.
Hasegawa J.
Ishida M.
Nakajima T.
Honda Y.
Kitao O.
Nakai H.
Vreven T.
Montgomery JA.
Peralta JE.
Ogliaro F.
Bearpark M.
Heyd JJ.
Brothers E.
Kudin KN.
Staroverov VN.
Kobayashi R.
Normand J.
Raghavachari K.
Rendell A.
Burant JC.
Iyengar SS.
Tomasi J.
Cossi M.
Rega N.
Millam NJ.
Klene M.
Knox JE.
Cross JB.
Bakken V.
Adamo C.
Jaramillo J.
Gomperts R.
Stratmann RE.
Yazyev O.
Austin AJ.
Cammi R.
Pomelli C.
Ochterski JW.
Martin RL.
Morokuma K.
Zakrzewski VG.
Voth GA.
Salvador P.
Dannenberg JJ.
Dapprich S.
Daniels AD.
Farkas .
Foresman JB.
Ortiz JV.
Cioslowski J.
Fox DJ.
Gaussian 09, Revision A.1
Gaussian,
Inc.;
Wallingford CT:
2009.
Calculations were carried out by
fully optimizing transition structures at the B3LYP/6-31+G(d,p)
level and then performing single-point calculations at M062X/6-311+G(d,p)
level with correction for solvent using Tomasi’s polarizable
continuum model (PCM) for DMSO level. The use of M062X functional
was chosen following recent studies carried out by Houk and Papai.
See:
26a
Rokob
TA.
Hamza A.
Papai I.
Org.
Lett.
2007,
9:
4279
26b
Wheeler SE.
Moran A.
Pieniazek SZ.
Houk KN.
J.
Phys. Chem.
2009,
113:
10376
26 See ref. 25b. Whereas the mean error
is estimated of about 2.0 kcal/mol for M062X functional,
for B3LYP deviations up to more than 10 kcal/mol could
be observed. For this reason, although B3LYP correctly predict the
observed enantioselectivity for 4, it cannot
be considered representative.