References and Notes
For example:
1a
Leung D.
Abbenante G.
Fairlie DP.
J.
Med. Chem.
2000,
43:
305
1b
Olson GL.
Bolin DR.
Bonner MP.
Bös M.
Cook CM.
Fry DC.
Graves
BJ.
Hatada M.
Hill DE.
Kahn M.
Madison VS.
Rusiecki VK.
Sarabu R.
Sepinwall J.
Vincent GP.
Voss ME.
J. Med. Chem.
1993,
36:
3039
For example:
2a
Wu Y.-D.
Gellman S.
Acc. Chem. Res.
2008,
41:
1231 ; and following articles in this issue, pp.
1233-1438
2b
Penke B.
Tóth G.
Váradi G. In
Amino Acids, Peptides and Proteins
Vol.
36:
Davies JS.
RSC Publications;
Cambridge:
2007.
p.131 ; and earlier volumes in this series
For a selection of leading references,
see the following and references therein:
3a
Chakraborty TK.
Rao KS.
Kiran MU.
Jagadeesh B.
Tetrahedron
Lett.
2008,
49:
2228
3b
Lesma G.
Sacchetti A.
Silvani A.
Tetrahedron
Lett.
2008,
49:
1293
3c
Lomlim L.
Einsiedel J.
Heinemann FW.
Meyer K.
Gmeiner P.
J.
Org. Chem.
2008,
73:
3608
4a
Jones RCF.
Dickson J.
J. Peptide Sci.
2001,
7:
220
4b
Jones RCF.
Dickson J.
J.
Peptide Sci.
2000,
6:
621
4c
Jones RCF.
Gilbert IH.
Rees DC.
Crockett
AK.
Tetrahedron
1995,
51:
6315
4d
Jones RCF.
Crockett AK.
Tetrahedron
Lett.
1993,
34:
7459
5
Jones RCF.
Hollis SJ.
Iley JN.
Tetrahedron: Asymmetry
2000,
11:
3273
6
Pillainayagam T.
PhD Thesis
Loughborough
University;
UK:
2005.
7 See, for example: Elguero J.
Goya P.
Jagerovic N.
Silva AMS.
Targets in Heterocyclic Systems
Vol.
6:
Attanasi OA.
Spinelli D.
Italian Society of
Chemistry;
Rome:
2002.
p.52
For leading references, see:
8a
Jones RCF.
Choudhury AK.
Iley JN.
Loizou G.
Lumley C.
McKee V.
Synlett
2010,
654
8b
Jones RCF.
Pillainayagam TA.
Synlett
2004,
2815
9 For our exploration with azomethine
imines, see: Jones
RCF.
Hollis SJ.
Iley JN.
ARKIVOC
2007,
(v):
152
10 For a similar approach to 4,5-dihydroisoxazole
peptide mimetics, see: Chung YJ.
Ryu EJ.
Keum G.
Kim
BH.
Bioorg. Med.
Chem.
1996,
4:
209
11 Cf. for α-amino-oximes:
ref. 10. For α-amino semicarbazides: Ito A.
Takahashi R.
Baba Y.
Chem. Pharm.
Bull.
1975,
23:
3081
12
Patel HV.
Vyas KA.
Pandey SP.
Fernandes PS.
Tetrahedron
1996,
52:
661
13
Bach K.
El-Seedi H.
Jensen H.
Nielsen H.
Thomsen I.
Torssell K.
Tetrahedron
1994,
50:
7543
14
Typical Procedure
for NCS Chlorination and Method 1
(
S
)-3-(1-
tert
-Butoxycarbonylaminoethyl)-2-phenyl-4,5-dihydro-1
H
-pyrazole-5-carboxylic
Acid Ethyl Ester (7)
To (S)-[1-methyl-2-(phenylhydrazono)ethyl]carbamic
acid tert-butyl ester (5,
1.24 g, 4.72 mmol) in EtOAc (15 mL) at 60 ˚C was
added NCS (0.71 g, 5.35 mmol, 1.1 equiv) and the mixture stirred
for 1 h. Ethyl propenoate (0.918 g, 1.0 mL, 9.16 mmol, 1.9 equiv),
KHCO3 (2.41 g, 23.97 mmol, 5.1 equiv) and a few drops
of H2O were added and the mixture stirred at 70 ˚C
for 20 h. The mixture was then filtered and the filtrate concentrated
under reduced pressure to give a dark orange oil, purified by column
chromatography on silica gel eluting with light PE-EtOAc
(7:1, v/v) to yield the title compound 7 (0.72
g, 41%) in an inseparable 1:1 mixture of diastereomers,
as an orange solid; mp 93-95 ˚C. IR (CHCl3): νmax = 3354
(NH), 1599 (C=N), 1708 (C=O), 1168 (CO), 750 (PhCH)
cm-¹. ¹H NMR (400
MHz, CDCl3): δ = 1.16
(3 H, t, J = 7.2
Hz, CH2CH
3), 1.35
(3 H, d, J = 7.0 Hz,
CH
3CH), 1.38 [9 H,
s, C(CH
3)3],
2.99 (1 H, dd, J = 7.2, 17.6
Hz, 4-CHH), 3.24 (1 H, dd, J = 12.4,
17.6 Hz, 4-CHH), 4.14 (2 H, q, J = 7.2 Hz,
CH
2CH3), 4.43 (1
H, m, CH3CH), 4.54, 4,57 (each
0.5 H, dd, J = 7.2,
12.4 Hz, CHCO2Et, diastereomers
1 and 2), 5.00 (1 H, br s, NH), 6.78 (1 H, m, ArH), 6.93 (2 H, m,
ArH), 7.18 (2 H, m, ArH). ¹³C NMR (100
MHz, CDCl3): δ = 14.2,
21.1 (CH3) 28.2 [(CH3)3C], 40.15
(4-CH2), 46.1 (5-CH), 61.7 (OCH2), 113.0 (PhCH), 113.0,
119.7, 119.8, 129.0 (4 × CH), 129.1 (2 × C),
145.3 (CN), 171.2, 171.5 (2 × CO). MS
(EI): m/z = 362 [MH+], 171
(12), 154 (24), 147 (19), 123 (21), 111 (28), 109 (35), 95 (54),
81 (54), 69 (85), 57 (100), 55 (99). HRMS (EI): m/z calcd
for C19H27N3O4: 362.2074 [MH+];
found 362.2073 [MH+]. Anal.
Calcd (%) for C19H27N3O4:
C, 63.1; H, 7.5; N, 11.6. Found: C, 62.6; H, 7.2; N, 11.8.
15
Sharp JT. In
Synthetic Applications of 1,3-Dipolar Cycloaddition
Chemistry Toward Heterocycles and Natural Products
Padwa A.
Pearson WH.
John Wiley and Sons;
Hoboken:
2003.
p.473
16a
Molteni G.
Ponti A.
Orlandi M.
New J. Chem.
2002,
26:
1340
16b
Broggini G.
Molteni G.
Orlandi M.
J.
Chem. Soc., Perkin Trans. 1
2000,
3742
17a For
a review of silver salts in pyrazole synthesis, see: Molteni G.
ARKIVOC
2007,
(ii):
224
17b
De Benassuti L.
Garanti L.
Molteni G.
Tetrahedron
2004,
60:
4627
18
Zhang X.
Breslav M.
Grimm J.
Guan K.
Huang A.
Liu F.
Maryanoff CA.
Palmer D.
Patel M.
Qian Y.
Shaw C.
Sorgi K.
Stefanick S.
Xu D.
J. Org. Chem.
2002,
67:
9471
19
Sakamoto T.
Kikugawa Y.
Chem. Pharm. Bull.
1988,
36:
800
20 Cf. ref. 16a for a discussion on the
reduced rate of nitrile imine cycloadditions with electron-rich
dipolarophiles and/or electron-poor dipoles.
21
Crystal Data for
7
C19H27N3O4, M = 361.44,
monoclinic, a = 5.14990
(10), b = 11.4316
(4), c = 16.8254
(6) Å, β = 96.320
(2), U = 984.52
(5) ų, T = 120
(2) K, space group P21, graphite monochromated
Mo Kα radiation, λ = 0.71073 Å, Z = 2, D
c
= 1.219
g cm-³, F(000) = 388,
colourless, dimensions 0.36 × 0.09 × 0.04 mm³, µ = 0.086
mm-¹, 3.02 < θ < 28.19˚, 11290
reflections measured, 2363 unique reflections, R
int = 0.0376.
The structure was solved by direct methods and refined on F
². Friedel pairs
were merged due to the lack of any significant anomalous scattering. wR2 = 0.0833
(all data, 244 parameters); R1 = 0.0351 [2223
data with F
²
> 2σ(F
²
)]. Crystallographic
data (excluding structure factors) for the structures in this paper
have been deposited with the Cambridge Crystallographic Data Centre
as supplementary publication no. 787832. Copies of the data can
be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK [fax: +44 (1223)336033 or e-mail:
deposit@ccdc.cam.ac.uk).
For leading references, see:
22a
Huck BR.
Fisk JD.
Gellman SH.
Org. Lett.
2000,
2:
2607
22b
Fisk JD.
Powell DR.
Gellman SH.
J. Am. Chem. Soc.
2000,
122:
5443