References and Notes
1a
Pindur U.
Heterocycles
1988,
27:
1253
1b
Abbiati G.
Canevari V.
Facoetti D.
Rossi E.
Eur. J. Org. Chem.
2007,
517
1c
Chen CB.
Wang XF.
Cao YJ.
Cheng H.
Xiao WJ.
J. Org. Chem.
2009,
74:
3532
1d
Jones SB.
Simmons B.
MacMillan DWC.
J. Am. Chem. Soc.
2009,
131:
13606
1e
Wang XF.
Chen JR.
Cao YJ.
Cheng HG.
Xiao WJ.
Org. Lett.
2010,
12:
1140
2a
Gioia C.
Hauville A.
Bernardi L.
Fini F.
Ricci A.
Angew. Chem. Int. Ed.
2008,
47:
9236
2b
Gioia C.
Bernardi L.
Ricci A.
Synthesis
2009,
161
2c
Bergonzini G.
Gramigna L.
Mazzati A.
Fochi M.
Bernardi L.
Ricci A.
Chem. Commun.
2010,
327
2d
Zheng C.
Lu Y.
Zhang J.
Chen X.
Chai Z.
Ma W.
Zhao G.
Chem. Eur. J.
2010,
16:
5853
3a
McNulty J.
Das P.
Eur.
J. Org. Chem.
2009,
4031
3b
McNulty J.
Das P.
McLeod D.
Chem.
Eur. J.
2010,
16:
6756
3c Related (E)-3-(2′-arylethenyl)-1(H)-indole analogues have recently been
discovered that arrest mitosis at the metaphase-anaphase transition.
See: Tcherniuk S.
Skoufias DA.
Labriere C.
Rath O.
Gueritte F.
Guillou C.
Kozielski F.
Angew.
Chem. Int. Ed.
2010,
49:
8228
3d The first reported synthesis
of (E)-3-(2′-arylethenyl)-1(H)-indole derivatives employed an alternative
Wittig-type procedure. See: De Silva SO.
Snieckus V.
Can. J. Chem.
1974,
52:
1294
4
Noland WE.
Xia GM.
Gee KR.
Konkel MJ.
Wahlstrom MJ.
Condoluci JJ.
Rieger DL.
Tetrahedron
1996,
52:
4555
5a
Ziegler F.
Spitzner EB.
Wilkins CK.
J. Org. Chem.
1971,
36:
1759
5b
Harrison CA.
Leinweber R.
Moody CJ.
Williams JMJ.
J.
Chem. Soc., Perkin Trans. 1
1995,
1127
5c
Cheng KF.
Kong YC.
Chan TY.
J. Chem. Soc., Chem. Commun.
1985,
48
6a
Steyn PS.
Vleggaar R.
Fortschr.
Chem. Org. Naturst.
1985,
48:
1
6b
Sings H.
Singh S. In
The
Alkaloids
Vol. 60:
Cordell GA.
Academic Press;
San Diego:
2003.
p.51-163
6c
Smith AB.
Mewshaw R.
J.
Am. Chem. Soc.
1985,
107:
1769
7
Chan WL.
Ho DD.
Lau CP.
Wat KH.
Kong YC.
Cheng KF.
Wong TT.
Chan TY.
Eur. J. Med. Chem.
1991,
26:
387
8
Achenbach H.
Biemann K.
J. Am. Chem. Soc.
1965,
87:
4944
9
Smith AB.
Davulcu AH.
Cho YS.
Ohmoto K.
Kurti L.
Ishiyama H.
J. Org.
Chem.
2007,
72:
4596
10
Roll DM.
Barbieri LR.
Bigelis R.
McDonald LA.
Arias DA.
Chang LP.
Singh MP.
Luckman SW.
Berrodin TJ.
Yudt MR.
J. Nat. Prod.
2009,
72:
1944
11
Oishi S.
Watanabe T.
Sawada J.
Asai A.
Ohno H.
Fujii N.
J. Med. Chem.
2010,
53:
5054
12
Pearson WH.
Pure
Appl. Chem.
2002,
74:
1339
13a
Voituriez A.
Panossian A.
Fleury-Bregeot N.
Retailleau P.
Marinetti A.
J. Am. Chem. Soc.
2008,
130:
14030
13b
Trost BM.
Seoane P.
Mignani S.
Acemoglu M.
J. Am.
Chem. Soc.
1989,
111:
7487
13c
Trost BM.
Angew. Chem. Int. Ed.
1986,
25:
1
13d
Kauffmann T.
Angew.
Chem. Int. Ed.
1974,
13:
627
14
Typical Procedure
for the Lewis Acid Promoted [3+2] Cycloaddition:
Into a flame-dried flask containing a magnetic stirring bar was
weighed 3-vinyl-2′-(4-methoxy-phenyl)-1H-indole
(1c; 60 mg, 0.24 mmol). Anhyd toluene (0.5
mL) was added followed by zinc bromide (6.0 mg, 0.020 mmol). The
flask was sealed and placed in an oil bath at 80 ˚C and
the reaction mixture was allowed to stir for 24 h after which time
the starting material was shown to be consumed by TLC. After removal
of toluene, the resulting mixture was chromatographed on silica
(20% EtOAc-hexane) to afford 3c (53.4
mg, 89%). Spectral data are provided below for Table
[¹]
. All cycloadducts were
isolated as glassy solids and, with the exception of 3a,
resisted crystallization attempts. Crystals of 3a suitable
for X-ray diffraction were deposited on slow evaporation of an EtOAc solution.
Crystallographic data were deposited at the Cambridge Crystallographic
Data Centre (www.ccdc.cam.ac.uk) as CCDC 796791.
1-Benzyl-1,2,3,4-tetrahydro-3-(1
H
-indol-3-yl)-2-phenylcyclopenta[
b
]indole
(3a): yield: 85%; mp 251-253 ˚C
(dec.; EtOAc). ¹H NMR (600 MHz, CDCl3): δ = 3.03
(1 H, dd, J = 7.8, 13.8 Hz),
3.28 (1 H, dd, J = 5.4, 13.8
Hz), 3.73 (1 H, m), 3.94 (1 H, m), 4.64 (1 H, d, J = 7.2
Hz), 6.80 (2 H, m), 6.87 (1 H, t, J = 7.2
Hz), 6.92 (1 H, d, J = 7.8 Hz),
6.97 (1 H, t, J = 7.2 Hz), 7.08
(1 H, t, J = 7.8 Hz), 7.14 (1
H, t,
J = 7.8 Hz),
7.20 (9 H, m), 7.24 (2 H, m) 7.34 (1 H, d, J = 8.4 Hz),
7.79 (1 H, br s, NH), 7.99 (1 H, br s, NH). ¹³C
NMR (150 MHz, CDCl3): δ = 41.4, 46.6,
49.4, 65.0, 107.1, 107.2, 111.2, 111.7, 117.1, 119.6, 119.7, 119.8,
121.0, 122.0, 122.2, 124.9, 128.2, 128.4, 128.5, 130.0, 136.9, 140.5, 141.0,
143.8, 144.6. HRMS (CI): m/z [M]+ calcd
for C32H26N2: 438.2096; found:
438.2081.
1-(2-Fluorobenzyl)-2-(2-fluorophenyl)-1,2,3,4-tetrahydro-3-(1
H
-indol-3-yl)cyclopenta[
b
]indole
(3b): yield: 82%. ¹H NMR (600
MHz, CDCl3): δ = 3.09 (1 H, dd, J = 7.3, 13.8 Hz, CH2),
3.40 (1 H, dd, J = 6.7, 13.8
Hz, CH2), 3.93 (1 H, m), 4.08 (1 H, m), 4.76 (1 H, d, J = 7.4 Hz), 7.05 (15 H, m),
7.25 (1 H, d, J
HH = 8.5
Hz), 7.35 (1 H, d, J = 8.2 Hz),
7.80 (1 H, s, NH), 7.96 (1 H, s, NH). ¹³C
NMR (150 MHz, CDCl3): δ = 35.0, 44.9,
46.9, 59.7, 111.3, 111.8, 115.2 (J
CF = 23
Hz), 115.6 (J
CF = 23
Hz), 116.9, 119.3, 119.5, 119.7, 121.0, 121.1, 121.9, 122.3, 123.9,
124.0, 124.8, 126.5, 127.4 (J
CF = 16
Hz), 127.9 (J
CF = 8
Hz), 128.0 (J
CF = 8
Hz), 130.4 (J
CF = 4
Hz), 130.9 (J
CF = 14
Hz), 131.9 (J
CF = 4
Hz), 136.8, 140.9, 143.7, 161.1 (J
CF = 245
Hz), 161.6
(J
CF = 245
Hz). HRMS (CI): m/z [M]+ calcd
for C32H24N2F2: 474.1908;
found: 474.1888.
1-(4-Methoxybenzyl)-1,2,3,4-tetrahydro-3-(1
H
-indol-3-yl)-2-(4-methoxyphenyl)cyclopenta[
b
]indole
(3c): yield: 89%. ¹H NMR (600
MHz, CDCl3): δ = 2.97 (1 H, dd, J = 7.8, 13.8 Hz), 3.29 (1 H,
dd, J = 4.8, 13.8 Hz), 3.72
(1 H, t, J = 7.2 Hz), 3.79 (3
H, s), 3.80 (3 H, s), 3.90 (1 H, m), 4.61 (1 H, d, J = 7.2
Hz), 6.75 (3 H, m), 6.83 (4 H, m), 6.96 (1 H, d,
J = 7.8
Hz), 7.03 (1 H, t, J = 7.1 Hz),
7.11 (6 H, m), 7.22 (1 H, d, J = 7.8
Hz), 7.31 (1 H, d, J = 8.4 Hz),
7.72 (1 H, s, NH), 7.87 (1 H, s, NH). ¹³C
NMR (150 MHz, CDCl3): δ = 39.9, 46.7,
49.4, 55.4, 55.5, 63.7, 111.2, 111.7, 113.8, 113.9, 117.0, 119.5,
119.6, 119.7, 119.9, 120.9, 122.0, 122.2, 125.0, 126.4, 129.2, 130.9,
132.6, 136.6, 136.9, 141.0, 143.8, 158.2, 158.3. HRMS (CI): m/z [M]+ calcd
for C34H30N2O2: 498.2307;
found: 498.2297.
1-(4-Bromobenzyl)-2-(4-bromophenyl)-1,2,3,4-tetrahydro-3-(1
H
-indol-3-yl)cyclopenta[
b
]indole
(3d): yield: 91%. ¹H NMR (600
MHz, CDCl3): δ = 3.01 (1 H, dd, J = 6.6, 13.8 Hz), 3.23 (1 H,
dd, J = 5.4, 13.8 Hz), 3.65
(1 H, t, J
HH = 7.2
Hz), 3.88 (1 H, m), 4.54 (1 H, d, J
HH = 7.2
Hz), 6.71 (1 H, d, J
HH = 2.4
Hz), 6.78 (1 H, d, J
HH = 7.8
Hz), 6.90 (1 H, t, J
HH = 7.5
Hz), 7.01 (4 H, m), 7.15 (4 H, m), 7.21 (1 H, d, J
HH = 7.8
Hz), 7.29 (2 H, d, J
HH = 8.4
Hz), 7.32 (1 H, d, J
HH = 8.4
Hz), 7.39 (2 H, d, J
HH = 8.4
Hz), 7.69 (1 H, br s, NH), 7.90 (1 H, br s, NH). ¹³C
NMR (150 MHz, CDCl3):
δ = 29.9,
46.7, 48.9, 63.7, 111.3, 111.9, 116.4, 119.2, 119.6, 119.8, 120.1,
120.2, 120.4, 121.3, 122.1, 122.4, 129.9, 131.4, 131.7, 131.8, 136.9,
138.8, 141.1, 143.3, 143.6. HRMS (CI): m/z [M]+ calcd
for C32H24N2Br2: 594.0306; found:
594.0317.
1,2,3,4-Tetrahydro-3-(1
H
-indol-3-yl)-2-(thiophen-2-yl)-1-[(thiophen-2-yl)methyl]cyclopenta[
b
]indole
(3e): yield: 77%. ¹H NMR (600
MHz, CDCl3): δ = 3.35 (1 H, dd, J = 6.6, 15.0 Hz), 3.59 (1 H,
dd, J = 4.2, 14.4 Hz), 3.94
(1 H, ddd, J
HH = 1.9,
4.6, 8.7 Hz), 4.10 (1 H, t, J
HH = 8.0
Hz), 4.69 (1 H, d, J
HH = 8.4
Hz), 6.78 (1 H, d, J
HH = 3.6
Hz), 6.84 (1 H, d, J
HH = 3.0
Hz), 6.86 (2 H, m), 6.92 (2 H, m), 6.95 (1 H, d, J
HH = 2.4
Hz), 7.07 (1 H, m), 7.12 (4 H, m), 7.19 (1 H, d, J
HH = 4.2 Hz),
7.24 (1 H, m), 7.34 (1 H, d, J
HH = 8.4
Hz), 7.84 (1 H, s, NH), 8.05 (1 H, s, NH). ¹³C
NMR (150 MHz, CDCl3): δ = 33.9, 47.1,
50.3, 58.7, 111.3, 111.8, 115.8, 119.4, 119.6, 119.8, 119.9, 120.0,
121.2, 122.3, 122.6, 123.7, 124.0, 124.8, 125.0, 126.3, 126.6, 127.0,
136.9, 140.7, 142.1, 143.6, 146.9. HRMS (CI): m/z [M]+ calcd
for C28H22N2S2: 450.1224;
found: 450.1214.