References and Notes
1a
Corsaro A.
Chiacchio MA.
Pistara V.
Curr. Org. Chem.
2009,
13:
482
1b
Corsaro A.
Chiacchio U.
Pistara V.
Synthesis
2001,
1903
2
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
3rd
ed.:
John Wiley;
New York:
1999.
3
Shriner RL.
Fuson RC.
Curtin DY.
Morrill TC.
The Systematic Identification of Organic Compounds
6th
ed.:
John Wiley;
New York:
1980.
4a
Wang K.
Qian X.
Cui J.
Tetrahedron
2009,
65:
10377
4b
Domingo LR.
Picher MT.
Arroyo P.
Sez
JA.
J.
Org. Chem.
2006,
71:
9319
4c
Czekelius C.
Carreira EM.
Angew. Chem. Int.
Ed.
2005,
44:
612
4d
Kabalka GW.
Pace RD.
Wadgaonkar PP.
Synth. Commun.
1990,
20:
2453
4e
Baran J.
Mayr H.
J. Org. Chem.
1989,
54:
5012
4f
Barton DH.
Beaton JM.
J.
Am. Chem. Soc.
1961,
83:
4083
4g
Barton DHR.
Beaton JM.
Geller LE.
Pechet MM.
J. Am. Chem. Soc.
1961,
83:
4076
5a
De S K.
Tetrahedron Lett.
2003,
44:
9055
5b
Shirini F.
Zolfigol MA.
Safari A.
Mohammadpoor-Baltork I.
Mirjalili BF.
Tetrahedron Lett.
2003,
44:
7463
5c
Shirini F.
Zolfigol MA.
Mallakpour B.
Mallakpour SE.
Hajipour AR.
Baltork IM.
Tetrahedron
Lett.
2002,
43:
1555
5d
Lee SY.
Lee BS.
Lee C.-W.
Oh DY.
J. Org. Chem.
2000,
65:
256
5e
Curini M.
Rosati O.
Pisani E.
Costantino U.
Synlett
1996,
333
5f
Ranu BC.
Sarkar DC.
J.
Org. Chem.
1988,
53:
878
5g
Donaldson RE.
Saddler JC.
Byrn S.
McKenzie AT.
Fuchs PL.
J. Org. Chem.
1983,
48:
2167
5h
Cava MP.
Little RL.
Napier DR.
J. Am. Chem. Soc.
1958,
80:
2257
6a
Majireck MM.
Witek JA.
Weinreb SM.
Tetrahedron
Lett.
2010,
51:
3555
6b
Martin M.
Martinez G.
Urpi F.
Vilarrasa J.
Tetrahedron Lett.
2004,
45:
5559
6c
Lukin KA.
Narayanan BA.
Tetrahedron
2002,
58:
215
6d
Watanabe Y.
Morimoto S.
Adachi T.
Kashimura M.
Asaka T.
J.
Antibiot.
1993,
46:
647
6e
Akazome M.
Tsuji Y.
Watanabe Y.
Chem.
Lett.
1990,
635
6f
Curran DP.
Brill JF.
Rakiewicz DM.
J. Org. Chem.
1984,
49:
1654
6g
Barton DHR.
Motherwell WB.
Simon ES.
Zard SZ.
J.
Chem. Soc., Chem. Commun.
1984,
337
6h
Olah GA.
Arvanaghi M.
Prakash GKS.
Synthesis
1980,
220
6i
Pojer PM.
Aust. J. Chem.
1979,
32:
201
6j
Timms GH.
Wildsmith E.
Tetrahedron
Lett.
1971,
12:
195
6k
Corey EJ.
Richman JE.
J.
Am. Chem. Soc.
1970,
92:
5276
6l
Pines SH.
Chemerda JM.
Kozlowski MA.
J. Org. Chem.
1966,
31:
3446
Numerous methods for the oxidative
deoximation have been reported, recent examples are as follows:
7a
Zhou X.-T.
Yuan Q.-L.
Ji H.-B.
Tetrahedron
Lett.
2010,
51:
613
7b
Shaabani A.
Farhangi E.
Appl. Catal., A
2009,
371:
148
7c
Ganguly NC.
Barik SK.
Synthesis
2008,
425
7d
Gupta PK.
Manral L.
Ganesan K.
Synthesis
2007,
1930
7e
Gogoi P.
Hazarika P.
Konwar D.
J.
Org. Chem.
2005,
70:
1934
7f
Shaabani A.
Naderi S.
Rahmati A.
Badri Z.
Darvishi M.
Lee DG.
Synthesis
2005,
3023
7g
Khazaei A.
Manesh AA.
Synthesis
2005,
1929
7h
Jain N.
Kumar A.
Chauhan SMS.
Tetrahedron Lett.
2005,
46:
2599
7i
Li Z.
Ding R.-B.
Xing Y.-L.
Shi
S.-Y.
Synth. Commun.
2005,
35:
2515
7j
Khazaei A.
Manesh AA.
Synthesis
2004,
1739
7k
Yang Y.
Zhang D.
Wu L.-Z.
Chen B.
Zhang L.-P.
Tung C.-H.
J. Org. Chem.
2004,
69:
4788
7l
Arnold JN.
Hayes PD.
Kohaus RL.
Mohan RS.
Tetrahedron
Lett.
2003,
44:
9173
7m
Krishnaveni NS.
Surendra K.
Nageswar YVD.
Rao KR.
Synthesis
2003,
1968
7n
Narsaiah AV.
Nagaiah K.
Synthesis
2003,
1881
7o
Bose DS.
Reddy AVN.
Das APR.
Synthesis
2003,
1883
7p
Chandrasekhar S.
Gopalaiah K.
Tetrahedron Lett.
2002,
43:
4023
7q
Khazaei A.
Vaghei RG.
Tetrahedron Lett.
2002,
43:
3073
7r
Hosseinzadeh R.
Tajbakhsh M.
Niaki MY.
Tetrahedron
Lett.
2002,
43:
9413
7s
Blay G.
Benach E.
Fernandez I.
Galletero S.
Pedro J.
Ruiz R.
Synthesis
2000,
403
8a
Chavan SP.
Soni P.
Tetrahedron
Lett.
2004,
45:
3161
8b
Maynez SR.
Pelavin L.
Erker G.
J. Org. Chem.
1975,
40:
3302
8c
DePuy CH.
Ponder BW.
J.
Am. Chem. Soc.
1959,
81:
4629
8d
Hershberg EB.
J. Org. Chem.
1948,
13:
542
Carbonyl compounds can also be regenerated
from oximes via photochemical and electrochemical methods, but only
a few examples have been reported:
9a
de Lijser HJP.
Fardoun FH.
Sawyer JR.
Quant M.
Org.
Lett.
2002,
4:
2325
9b
Haley MF.
Yates K.
J. Org. Chem.
1987,
52:
1817
9c
Mandic Z.
Lopotar N.
Electrochem. Commun.
2005,
7:
45
10
Gawly RE.
Org.
React.
1988,
35:
1 ;
and references cited therein
11
Jiang N.
Ragauskas AJ.
Tetrahedron Lett.
2010,
51:
4479
12
Corey EJ.
Knapp S.
Tetrahedron Lett.
1976,
41:
3667
13
Typical Procedure
for the CuCl
2
˙2H
2
O-Promoted Regeneration of Carbonyl Compounds
from Various Oximes
Oxime 1a (1.01
g, 5.12 mmol) was dissolved in MeCN (20 mL), CuCl2˙2H2O
(1.73 g, 10.15 mmol) and H2O (5 mL) were added. When
the suspension was heated to reflux, the mixture became a bluish
clear solution. The resulting reaction solution was then stirred
at reflux (75 ˚C) for around 2 h and monitored
by TLC (EtOAc-hexane, 1:6). After the reaction
was complete, the solvents were removed by vacuum distillation.
The residue was partitioned between EtOAc (50 mL) and H2O
(30 mL), the organic and aqueous phases were separated. Organic
phase was washed with brine (5 mL) and dried over anhyd MgSO4.
Concentration of the organic solution gave crude product, which
was purified by flash chromatography to afford benzophenone (2a, 0.914 g, 5.02 mmol) in 98% yield.
To the above-mentioned aqueous phase was added an aq solution of
NaOH (11.0 mL, 2 M, 22.00 mmol). After vigorous stirring for 1 h,
the bluish solid was collected on a Buchner funnel by suction. After being
dried in a warm air at around 50 ˚C for 12 h until
the weight of the solid kept constant, Cu(OH)2˙2H2O
(1.34 g, 10.03 mmol) was recovered in 99% yield.
Spectral
analysis showed that compounds 2a-e,i-l,n-s,v obtained from
the above hydrolysis are identical with the commercially available
authentic samples. Characterization data of compounds 2f-h,m,t,u are as follows:
Compound 2f: ¹H NMR (400 MHz,
CDCl3): δ = 3.89
(s, 3 H), 7.35 (d, J = 7.9
Hz, 1 H), 7.48-7.57 (m, 4 H), 7.62-7.69 (m, 1
H), 8.18-8.24 (m, 2 H), 9.98 (s, 1 H). MS (EI): m/z (%) = 256
(4) [M+], 217 (18), 182 (2),
155 (2), 105 (100), 77 (17). IR (KBr): ν = 3005,
2885, 1735, 1680, 1600, 1505, 1450, 1400, 1255, 1190, 1140, 1120,
1060, 1025, 850, 805, 730, 700 cm-¹.
Compound 2g: ¹H NMR (400 MHz,
CDCl3): δ = 1.30
(t, J = 7.1
Hz, 3 H), 4.30 (q, J = 7.1
Hz, 2 H), 4.71 (s, 2 H), 7.02 (d, J = 6.9
Hz, 2 H), 7.85 (d, J = 6.9
Hz, 2 H), 9.90 (s, 1 H). IR (neat): ν = 2980,
2835, 2770, 1755, 1690, 1600, 1510, 1440, 1380, 1310, 1280, 1205,
1160, 1080, 1025, 835, 715, 610 cm-¹.
HRMS (EI): m/z calcd for C11H12O4 [M+]: 208.0736;
found: 208.0730.
Compound 2h: ¹H
NMR (400 MHz, CDCl3): δ = 1.30
(t, J = 7.1
Hz, 3 H), 3.96 (s, 1 H), 4.28 (q, J = 7.1
Hz, 2 H), 4.79 (s, 2 H), 6.84 (d, J = 8.1
Hz, 1 H), 7.41-7.46 (m, 2 H), 9.87 (s, 1 H). IR (KBr): ν = 2980,
2940, 2910, 1750, 1680, 1590, 1510, 1470, 1430, 1395, 1270, 1200,
1140, 1070, 1030, 870, 810, 780, 735, 640 cm-¹.
HRMS (EI): m/z calcd for C12H14O5 [M+]:
238.0841; found: 238.0839.
Compound 2m: ¹H
NMR (400 MHz, CDCl3): δ = 7.52
(dd, J
1 = 1.6
Hz, J
2 = 8.6
Hz, 1 H), 7.67 (d, J = 1.6
Hz, 1 H), 8.29 (d, J = 8.6
Hz, 1 H), 10.07 (s, 1 H), 10.58 (s, 1 H). IR (KBr): ν = 3255,
3085, 2870, 1700, 1620, 1585, 1530, 1480, 1450, 1315, 1255, 1165,
1140, 1080, 985, 850, 760, 705, 540 cm-¹. MS
(EI): m/z (%) = 167
(100) [M+], 166 (44), 151
(1), 136 (3), 119 (7), 109 (4), 92 (3), 81 (3), 63 (6).
Compound 2t: ¹H NMR (400 MHz,
CDCl3): δ = 2.28
(s, 3 H), 3.50-3.69 (m, 2 H), 4.88 (dd, J
1 = 6.1
Hz, J
2 = 8.1
Hz, 1 H), 7.03 (d, J = 7.9
Hz, 2 H), 7.13-7.26 (m, 5 H), 7.28-7.35 (m, 2
H), 7.37-7.44 (m, 2 H) 7.48-7.55 (m, 1 H), 7.82-7.89 (m,
2 H). MS (EI): m/z (%) = 332(4) [M+],
209 (5), 179 (2), 123 (13), 105 (100), 91 (6), 77 (59). IR (KBr): ν = 3035, 2920,
1685, 1595, 1490, 1450, 1420, 1335, 1220, 980, 810, 745, 700, 685,
550 cm-¹.
Compound 2u: ¹H NMR (400 MHz,
CDCl3): δ = 2.05
(s, 3 H), 2.29 (s, 3 H), 2.92-3.08 (m, 2 H), 4.63 (dd, J
1 = 6.8
Hz, J
2 = 7.8
Hz, 1 H), 7.03 (d, J = 8.0
Hz, 2 H), 7.18 (d, J = 8.0 Hz,
2 H), 7.19-7.26 (m, 5 H). MS (EI): m/z (%) = 270
(32) [M+], 213 (2), 147 (43),
124 (100), 103 (5), 91 (12), 77 (7), 43 (43). IR (neat): ν = 3030,
2940, 1720, 1490, 1455, 1410, 1360, 1150, 1020, 810, 700, 535, 500
cm-¹.
14
Stutz P.
Stadler PA.
Org. Synth., Coll.
Vol. VI
1988,
109
15a
Horvath IT.
Anastas PT.
Chem. Rev.
2007,
107:
2167
15b
Horvath IT.
Acc. Chem. Res.
2002,
35:
685
16 When the pH value was kept higher
than 9.5, the precipitation of Cu(OH)2˙2H2O
was complete, which was determined by adding 2 drops of an aq solution
of Na2S into the filtrate. No black CuS appeared.
17
Conversion of
Cu(OH)
2
˙2H
2
O into CuCl
2
˙2H
2
O
The
above Cu(OH)2˙2H2O was first heated
at 150 ˚C for around 6 h, and the resulting brown
anhyd CuO was then treated with 2.2 molar equivalent of aq HCl at
reflux for 2 h. Removal of H2O under vacuum at 45 ˚C
gave blue crystalline CuCl2˙2H2O
in a nearly quantitative yield.